Ⅰ 初一數學大題解題方法與技巧
數學的大題是很難的一部分,下面我就大家整理一下初一數學大題 解題方法 與技巧,僅供參考。
代入驗證法
代入驗證法也是一個比較有效且簡單的演算法,多用於已知條件求解的案例中,這種題目多為送分題,像在二次函數運算時,題目中給出二次函數經過兩點,求解這個解析式,如果不想列方程式進行計算,可以直接數據代入答案中解析式,選出正確答案即可。
常用的數學思想方法
1、數形結合思想:就是根據數學問題的條件和結論之間的內在聯系,既分析其代數含義,又揭示其幾何意義,使數量關系和圖形巧妙和諧地結合起來,並充分利用這種結合,尋求解體思路,使問題得到解決。
2、聯系與轉化的思想:事物之間是相互聯系、相互制約的,是可以相互轉化的。數學學科的各部分之間也是相互聯系,可以相互轉化的。在解題時,如果能恰當處理它們之間的相互轉化,往往可以化難為易,化繁為簡。如:代換轉化、已知與未知的轉化、特殊與一般的轉化、具體與抽象的轉化、部分與整體的轉化、動與靜的轉化等等。
理清思路,從問題的思考角度培養學生的解題技巧
高效課堂教學除了概念的講解之外,主要集中在解題能力的培養上。學生不僅要理解例題,而且要做大量的練習題。在解題訓練中,教師首先要引導學生分析題意,明確思路,再動筆解題。培養學生解題思路時,教師可以要求學生嚴格遵守一定的解題程序去思考,以形成良好的解題習慣。
進行解題思考時,學生首先要仔細地讀題,弄清楚題目考察什麼,明確各個數據之間的關系,然後解題。有必要時可以把相關的數據關系先列出來,以提高解題的效率,也提高解題的准確度。例如,學習求「幾分之幾」的方法時,教師先不必急著答題,而是引導學生進行思考,誰是誰的幾分之幾。經過思考,學生知道了用乘法計算,解題就容易了。從讀題、思考、發現規律到最後解題,學生的思路都非帶清晰,形成了良好的解題思考習慣,學習過程就易提高效率和質量。
以上就是我為大家整理的初一數學大題解題方法與技巧。
Ⅱ 初中數學考試卷最後的大題一般的做題技巧
一般最後一道大題會分成幾個小題,難度由易到難,所以第一題一般是送分的,一定要做,第一小題的結果可能會運用到第二小題。考試時如有時間多餘,就可往下攻克,沒有時間的話可以放棄,把簡單的分先抓住。
Ⅲ 高考數學大題怎麼答
你好,高考數學大題對於高考來說,可能會拉開比較大的差距,那麼在這種情況下對於大題的回答尤為重要,所以,高考數學大題怎麼答,如下方法:
1、對於集合,函數,導數,幾何等高中數學這一塊要有一個很清晰的概念,形成自己對整個高考數學知識體系的任職,這樣才可以做到很明顯的舉一反三,觸類旁通,解答起來更加得心應手,因為一個大題可能會涉及到很多個重要的知識點。
2、對於大題的回答要理清楚解題的邏輯思路,步步為營,讓閱卷的老師也很容易跟著你的思路走,並且你得到了一個正確答案,這樣才是最好的結果。
3、字一定要寫漂亮一些。這個是很很很重要的也是最基礎的要求,畢竟這個也可以作為加分項。
謝謝,希望您能夠採納!
玉林美食
Ⅳ 高中數學大題解題方法有哪些
一、三角函數題
注意歸一公式、誘導公式的正確性(轉化成同名同角三角函數時,套用歸一公式、誘導公式(奇變、偶不變;符號看象限)時,很容易因為粗心,導致錯誤!一著不慎,滿盤皆輸!)。
二、數列題
1.證明一個數列是等差(等比)數列時,最後下結論時要寫上以誰為首項,誰為公差(公比)的等差(等比)數列;
2.最後一問證明不等式成立時,如果一端是常數,另一端是含有n的式子時,一般考慮用放縮法;如果兩端都是含n的式子,一般考慮數學歸納法(用數學歸納法時,當n=k+1時,一定利用上n=k時的假設,否則不正確。利用上假設後,如何把當前的式子轉化到目標式子,一般進行適當的放縮,這一點是有難度的。簡潔的方法是,用當前的式子減去目標式子,看符號,得到目標式子,下結論時一定寫上綜上:由①②得證;
3.證明不等式時,有時構造函數,利用函數單調性很簡單(所以要有構造函數的意識)。
三、立體幾何題
1.證明線面位置關系,一般不需要去建系,更簡單;
2.求異面直線所成的角、線面角、二面角、存在性問題、幾何體的高、表面積、體積等問題時,要建系;
3.注意向量所成的角的餘弦值(范圍)與所求角的餘弦值(范圍)的關系(符號問題、鈍角、銳角問題)。
四、概率問題
1.搞清隨機試驗包含的所有基本事件和所求事件包含的基本事件的個數;
2.搞清是什麼概率模型,套用哪個公式;
3.記准均值、方差、標准差公式;
4.求概率時,正難則反(根據p1+p2+...+pn=1);
5.注意計數時利用列舉、樹圖等基本方法;
6.注意放回抽樣,不放回抽樣;
7.注意“零散的”的知識點(莖葉圖,頻率分布直方圖、分層抽樣等)在大題中的滲透;
8.注意條件概率公式;
9.注意平均分組、不完全平均分組問題。
五、圓錐曲線問題
1.注意求軌跡方程時,從三種曲線(橢圓、雙曲線、拋物線)著想,橢圓考得最多,方法上有直接法、定義法、交軌法、參數法、待定系數法;
2.注意直線的設法(法1分有斜率,沒斜率;法2設x=my+b(斜率不為零時),知道弦中點時,往往用點差法);注意判別式;注意韋達定理;注意弦長公式;注意自變數的取值范圍等等;
3.戰術上整體思路要保7分,爭9分,想12分。
六、導數、極值、最值、不等式恆成立(或逆用求參)問題
1.先求函數的定義域,正確求出導數,特別是復合函數的導數,單調區間一般不能並,用“和”或“,”隔開(知函數求單調區間,不帶等號;知單調性,求參數范圍,帶等號);
2.注意最後一問有應用前面結論的意識;
3.注意分論討論的思想;
4.不等式問題有構造函數的意識;
5.恆成立問題(分離常數法、利用函數圖像與根的分布法、求函數最值法);
6.整體思路上保6分,爭10分,想14分。
Ⅳ 成考數學大題怎麼寫
寫成考數學大題的方法:抓住關鍵從關鍵點出發,找到突破口,聯系知識進行全面分析形成正確的解題思路,就可以化難為易,化繁為簡,從而解決正確的答案,調理要清晰,不留空白。
在做成人高考數學試題的時候,必須合理安排答題順序,力求能做的就做好做正確,不漏一分。容易得分的題目優先做,有把握的題優先做,可以多得分的題優先做。
必須合理安排答題順序,力求能做的就做好做正確,真正做到得分率最大化。合理安排答題順序的原則就是能做什麼就做什麼,取分才是硬道理。
成人高考數學解題技巧:
當作選擇題時,應回憶和思考問題中出現的概念、公式、性質等其它內容。盡量消除失分的「隱患」。
反復析題析題就是分析問題的意義,在認真審題的基礎上,對全題進行反復分析和解剖,從而找到正確的解題方法。對於一些似是而非的選項,在難以確定正確選項的情況下,也可以使用代入法。
反復檢查到最後,反復檢查,仔細檢查;檢查填寫的答案是否與選擇的答案一致,檢查答案是否正確,有沒有更改的必要。
Ⅵ 初三數學大題不會做怎麼辦
你好,初三數學答題不會做首先你要對初中的整個數學有一個思維導圖,知道題目所考的知識點是什麼,得掌握知識並且會運用。做題方法很重要。以下常用方法:1、配方法;所謂配方,就是把一個解析式利用恆等變形的方法,把其中的某些項配成—個或幾個多項式正整數次冪的和形式。通過配方解決數學問題的方法叫配方法。
2、因式分解法,就是把一個多項式化成幾個整式乘積的形式。因式分解是恆等變形的基礎,它作為數學的一個有力工具、一種數學方法在代數、幾何、三角等的解題中起著重要的作用。因式分解的方法有許多,中學課本上介紹有提取公因式法、公式法、分組分解法、十字相乘法等都是因式分解的常用手段。
3、換元法是數學中一個非常重要而且應用十分廣泛的解題方法。我們通常把未知數或變數稱為元,所謂換元法,就是在一個比較復雜的數學式子中,用新的變元去代替原式的一個部分或改造原來的式子,使它簡化,使問題易於解決。
4、構造法;在解題時,我們常常會採用這樣的方法,通過對條件和結論的分析,構造輔助元素,它可以是一個圖形、一個方程(組)、一個等式、一個函數、一個等價命題等,架起—座連接條件和結論的橋梁,從而使問題得以解決,這種解題的數學方法,我們稱為構造法。運用構造法解題,可以使代數、三角、幾何等各種數學知識互相滲透,有利於問題的解決。
5、反證法是一種間接證法,它是先提出一個與命題的結論相反的假設,然後,從這個假設出發,經過正確的推理,導致矛盾,從而否定相反的假設,達到肯定原命題正確的一種方法。反證法可以分為兩種:一種是相反的結論只有一種,另一種是相反的結論有無數種。前者需要把相反的結論推翻,後者只要舉出一個反例,就達到了證明的目的。
Ⅶ 考試數學題沒有時間做大題怎麼辦 以下幾個方法希望幫到你
教大家一些提高數學速度的小竅門,希望能夠幫大家解決做題慢的問題!
1、熟悉基本的解題步驟和解題方法。
解題的過程,是一個思維的過程。對一些基本的、常見的問題,前人已經總結出了一些基本的解題思路和常用的解題程序,我們一般只要順著這些解題的思路,遵循這些解題的步驟,往往很容易找到習題的答案。
2、審題要認真仔細。
對於一道具體的習題,解題時最重要的環節是審題。審題的第一步是讀題,這是獲取信息量和思考的過程。讀題要慢,一邊讀,一邊想,應特別注意每一句話的內在涵義,並從中找出隱含條件。
有些學生沒有養成讀題、思考的習慣,心裡著急,匆匆一看,就開始解題,結果常常是漏掉了一些信息,花了很長時間解不出來,還找不到原因,想快卻慢了。所以,在實際解題時,應特別注意,審題要認真、仔細。
3、認真做好歸納總結。
在解過一定數量的習題之後,對所涉及到的知識、解題方法進行歸納總結,以便使解題思路更為清晰,就能達到舉一反三的效果,對於類似的習題一目瞭然,可以節約大量的解題時間。
4、熟悉習題中所涉及的內容。
解題、做練習只是學習過程中的一個環節,而不是學習的全部,你不能為解題而解題。解題時,我們的概念越清晰,對公式、定理和規則越熟悉,解題速度就越快。
因此,我們在解題之前,應通過閱讀教科書和做簡單的練習,先熟悉、記憶和辨別這些基本內容,正確理解其涵義的本質,接著馬上就做後面所配的練習,一刻也不要停留。
5、學會畫圖。
畫圖是一個翻譯的過程,,把解題時的抽象思維,變成了形象思維,從而降低了解題難度。有些題目,只要分析圖一畫出來,其中的關系就變得一目瞭然。尤其是對於幾何題,包括解析幾何題,若不會畫圖,有時簡直是無從下手。
因此,牢記各種題型的基本作圖方法,牢記各種函數的圖像和意義及演變過程和條件,對於提高解題速度非常重要。
6、先易後難,逐步增加習題的難度。
人們認識事物的過程都是從簡單到復雜。簡單的問題解多了,從而使概念清晰了,對公式、定理以及解題步驟熟悉了,解題時就會形成跳躍性思維,解題的速度就會大大提高。
我們在學習時,應根據自己的能力,先去解那些看似簡單,卻很重要的習題,以不斷提高解題速度和解題能力。隨著速度和能力的提高,再逐漸增加難度,就會達到事半功倍的效果。
Ⅷ 考研數學大題答題技巧
1.踩點得分
對於同一道題目,有的人解決得多,有的人解決得少。為了區分這種情況,閱卷評分辦法是懂多少知識就給多少分,這種方法我們叫它“踩點給分”。鑒於這一情況,考試中對於難度較大的題目採用一定的策略,其基本精神就是會做的題目力求不失分,部分理解的題目力爭多得分。對於會做的題目,要解決“會而不對,對而不全”這個老大難問題。
有的考生答案雖然對,但中間有邏輯缺陷或概念錯誤,或缺少關鍵步驟。因此,會做的題目要特別注意表達的准確、考慮的周密、書寫的規范、語言的科學,防止被“分段扣點分”。對於考生會做的題目,閱卷老師則更注意找其中的合理成分,分段給點分,所以“做不出來的題目得一二分易,做得出來的題目得滿分難”。對絕大多數考生來說,更為重要的是如何從拿不下來的題目中得點分。
2.大題拿小分
如果遇到一個很困難的問題,確實啃不動,一個聰明的解題策略是,將它們分解為一系列的步驟,或者是一個個小問題,先解決問題的一部分,能解決多少就解決多少,能演算幾步就寫幾步,尚未順利不等於失敗。特別是那些解題層次明顯的題目,或者是已經程序化了的方法,每進行一步得分點的演算都可以得分,最後結論雖然未得出,但分數卻已過半,這叫“大題拿小分”,確實是個好主意。
卡殼處先留白,以後推前:解題過程卡在某一過渡環節上是常見的。這時,我們可以先承認中間結論,往後推,看能否得到結論。如果不能,說明這個途徑不對,立即改變方向如果能得出預期結論,就回過頭來,集中力量攻克這一“卡殼處”。
3.以退求進
“以退求進”是一個重要的解題策略。如果你不能解決所提出的問題,那麼,你可以從一般退到特殊,從抽象退到具體,從復雜退到簡單,從整體退到部分,從較強的結論退到較弱的結論。總之,退到一個你能夠解決的問題。
以上就是關於考研數學大題答題技巧的相關分享,希望對大家有所幫助,想要了解更多相關內容,歡迎大家關注本平台!
Ⅸ 初中數學試卷大題步驟怎麼給分
先讀題,默讀,要認真閱讀,至少五遍以上。
讀懂了題目後,先在草稿紙上,進行答題,寫出主要的解題過程和計算過程,並檢查是否正確。
確認正確後,再回到試卷上答題。
答題要切記先寫:「解:」或「證明:」;
然後再詳細寫明答題過程,並再次驗算結果。
最後一定記得要寫「答」,答的內容要明確,並能正確表達完整的意思,切記不可只寫答案,因只寫答案是不能拿到完整分數的。
根據大綱,大題每一步都有相應的分數,例如:解、答、證明,這些有一定的分數的;還有多個步驟的題目,每完成一個步驟就可以取得相應的分數,用對指定的公式,也有相應的分數。
就是這些的,希望同學們有更好的成績!