1. 如何在中學數學教學中滲透數學建模思想
中學數學教學中數學建模思想的滲透
/鄭來兵
[導讀]新課程標准明確提出中學數學要講背景、講應用。
一、數學建模與數學建模意識
在實際工作中遇到的問題,完全純粹的只用現成的數學知識就能解決的問題幾乎是沒有的。其中的數學奧妙不是明擺在那裡等著你去解決,而是暗藏在深處等著你去發現。也就是說,你要對復雜的實際問題進行分析,發現其中可以用數學語言來描述的關系或規律,把這個實際問題化成一個數學問題,這就稱為數學模型,建立數學模型的這個過程就稱為數學建模。著名數學家懷特海曾說:「數學就是對於模式的研究」。所謂數學模型,是指對於現實世界的某一特定研究對象,為了某個特定的目的,在做了一些必要的簡化假設,運用適當的數學工具,並通過數學語言表述出來的一個數學結構。數學中的各種基本概念,都以各自相應的現實原型作為背景而抽象出來的數學概念。各種數學公式、方程式、定理、理論體系等等,都是一些具體的數學模型。 舉個簡單的例子,二次函數就是一個數學模型,很多數學問題甚至實際問題(自由落體運動)都可以轉化為二次函數來解決。而通過對問題數學化,模型構建,求解檢驗使問題獲得解決的方法稱之為數學模型方法。我們的數學教學說到底實際上就是教給學生前人給我們構建的一個個數學模型和怎樣構建模型的思想方法,以使學生能運用數學模型解決數學問題和實際問題。由此,我們可以看到,培養學生運用數學建模解決實際問題的能力,關鍵是把實際問題抽象為數學問題,必須首先通過觀察分析、提煉出實際問題的數學模型,然後再把數學模型納入某知識系統去處理,這不但要求學生有一定的抽象能力,而且要有相當的觀察、分析、綜合、類比能力。學生這種能力的獲得不是一朝一夕的事情,需要把數學建模意識貫穿在教學的始終,也就是要不斷地引導學生用數學思維的觀點去觀察、分析和表示各種事物的關系、空間關系和數學信息,從紛繁復雜的具體問題中抽象出我們熟悉的數學模型,進而達到用數學模型來解決實際問題,使數學建模意識成為學生思考問題的方法和習慣。具體的講,數學模型方法的操作程序大致上為:
??? 實際問題→分析抽象→建立模型→數學問題 ?????????↑????????????????????????↓ ???????檢驗 ← 實際解 ← 釋譯 ← 數學解
二、在數學建模活動中要充分重視學生的主體性
提高學生的主體意識是新課程改革的基本要求。在課堂教學中真正落實學生的主體地位,讓學生真正成為數學課堂的主人,促進學生自主地發展,是現代數學課堂的重要標志,是高中數學素質教育的核心思想,也是全面實施素質教育的關鍵。中學數學建模活動旨在培養學生的探究能力和獨立解決問題的能力,學生是建模的主體,學生在進行建模活動過程中表現出的主體性表現為自主完成建模任務和在建模活動中的互相協作性。中學生具有好奇、好問、好動、好勝、好玩的心理特點,思維開始從經驗型走向理論型,出現了思維的獨立性和批判性,表現為喜歡獨立思考、尋根究底和質疑爭辯。因此,教師在課堂上應該讓學生充分進行自主體驗,在數學建模的實踐中運用這些數學知識,感受和體驗數學的應用價值。教師可作適當的點撥指導,但要重視學生的參與過程和主體意識,不能越俎代庖,目的是提高學生進行探究性學習的能力、提高學生學習數學的興趣。 三、處理好數學建模的過程與結果的關系
我國的中學數學新課程改革已進入全面實施階段。新的高中數學課程標准強調要拓寬學生的數學知識面,改善學生的學習方式,關注學生的學習情感和情緒體驗,培養學生進行探究性學習的習慣和能力。數學建模活動是一種使學生在探究性活動中受到數學教育的學習方式,是運用已有的數學知識解決問題的教與學的雙邊活動,是學生圍繞某個數學問題自主探究、學習的過程。新的高中數學課程標准要求把數學探究、數學建模的思想以不同的形式滲透在各模塊和專題內容之中,突出強調建立科學探究的學習方式,讓學生通過探究活動來學習數學知識和方法,增進對數學的理解,體驗探究的樂趣。比如正方體截面切割的形狀,用一個平面去截正方體,截面的形狀是什麼樣的?
學習目標:通過想像和操作,探究正方體截面的形狀。 問題串:
1.給出分類的原則(例如:按截面圖形的邊數分類)。按照你的分類原則,能得到多少種不同的截面?設計一種方案,找到截得這些形狀截面的方法,並在正方體中畫出示意圖。
2.如果截面是三角形,你認為可以截出幾種不同的三角形? 3.如果截面是四邊形,你認為可以截出幾種不同的四邊形? 4.證明上面的結果。
5.截面多邊形的邊數最多有幾條?請說明理由。
6.截面可能是正方形嗎?可能有幾種?畫出示意圖。 7.如果截面是三角形,其面積最大是多少?畫出示意圖。 8.你還能提出哪些相關的數學問題?
這個問題就可以根據不同的學生提出不同的要求,如:利用土豆、蘿卜或橡皮泥通過切割實驗進行研究;用透明材料製作一個中空的正方體,留出注水口,注入有色水,通過觀察水面形狀的方式進行實驗研究;利用電腦或圖形計算器。藉助某些軟體(如幾何畫板,Z+Z智能平台)進行模擬實驗研究;空間想像;證明你的結論。
四、數學建模教學與素質教育 數學建模問題貼近實際生活,往往一個問題有很多種思路,有較強的趣味性、靈活性,能激發學生的學習興趣,可以觸發不同水平的學生在不同層次上的創造性,使他們有各自的收獲和成功的體驗。由於給了學生一個縱情創造的空間,就為學生提供了展示其創造才華的機會,從而促進學生素質能力的培養和提高,對中學素質教育起到積極推動作用。
1.構建建模意識,培養學生的轉換能力
恩格斯曾說過:「由一種形式轉化為另一種形式不是無聊的游戲而是數學的杠桿,如果沒有它,就不能走很遠。」由於數學建模就是把實際問題轉換成數學問題,因此如果我們在數學教學中注重轉化,用好這根有力的杠桿,對培養學生思維品質的靈活性、創造性及開發智力、培養能力、提高解題速度是十分有益的。學生對問題的研究過程,無疑會激發其學習數學的主動性,且能開拓學生的創造性思維能力,養成善於發現問題、獨立思考的習慣。教材的每一章都由一個有關的實際問題引入,可直接告訴學生,學了本章的教學內容及方法後,這個實際問題就能用數學模型得到解決,這樣,學生就會產生創新意識。
如新教材「三角函數」章前提出:有一塊以O點為圓心的半圓形空地,要在這塊空地上劃出一個內接矩形ABCD辟為綠冊,使其冊邊AD落在半圓的直徑上,另兩點BC落在半圓的圓周上,已知半圓的半徑長為a,如何選擇關於點O對稱的點A、D的位置,可以使矩形面積最大? 這是培養創新意識及實踐能力的好時機,要注意引導,對所考察的實際問題進行抽象分析,建立相應的數學模型,並通過新舊兩種思路方法提出新知識,激發學生的求知慾,但不可挫傷學生的積極性,失去「亮點」。
這樣通過章前問題教學,學生明白了數學就是學習、研究和應用數學模型,同時培養學生追求新方法的意識及參與實踐的意識。因此,要重視章前問題的教學,還可據實際需要及學生實踐活動中發現的問題,補充一些實例,強化這方面的教學,使學生在日常生活及學習中重視數學,培養學生的數學建模意識。 2.注重直覺思維,培養學生的想像能力
眾所周知,數學史上不少的數學發現都來源於直覺思維,如笛卡爾坐標系、歌德巴赫猜想等,應該說它們不是任何邏輯思維的產物,而是數學家通過觀察、比較、領悟、突發靈感發現的。通過數學建模教學,使學生有獨到的見解和與眾不同的思考方法,如善於發現問題,溝通各類知識之間的內在聯系等是培養學生創新思維的核心。七年級的教材里,以游戲的方式編排了簡單而有趣的概率知識,如轉盤游戲,扔硬幣來驗證出現正面或反面的概率等等。通過有趣的游戲,激起了學生學習的興趣,並了解到概率統計知識在社會中應用的廣泛性和重要性。 3.灌輸「構造」思想,培養學生的創新能力
「一個好的數學家與一個蹩腳的數學家之間的差別,就在於前者有許多具體的例子,而後者則只有抽象的理論。」我們前面講到,「建模」就是構造模型,但模型的構造並不是一件容易的事,又需要有足夠強的構造能力,而學生構造能力的提高則是學生創造性思維和創造能力的基礎:創造性地使用已知條件,創造性地應用數學知識。 當然,數學建模在現在的中學數學教育中的地位和作用更加重要。但究竟如何在中學搞好數學建模活動,更好地發揮數學建模的作用,仍將是一個漫長而曲折的過程,是我們廣大中學教師和教育工作者所思考和探索的問題。
2. 中考數學那種證明題怎麼做
初中數學幾何題關鍵要能識別常見的幾何模型,嚴格按照幾何定理去證明。
3. 初中數學模型解題法及技巧有哪些
數學的答題解答是有很多技巧的,下面我就大家整理一下初中數學模型解題法及技巧有哪些,僅供參考。
學會運用數形結合思想
數形結合思想是指從幾何直觀的角度,利用幾何圖形的性質研究數量關系,尋求代數問題的解決方法(以形助數),或利用數量關系來研究幾何圖形的性質,解決幾何問題(以數助形)的一種數學思想。
縱觀近幾年全國各地的中考壓軸題,絕大部分都是與平面直角坐標系有關的,其特點是通過建立點與數即坐標之間的對應關系,一方面可用代數方法研究幾何圖形的性質,另一方面又可藉助幾何直觀,得到某些代數問題的解答。
旋轉全等模型
半形:有一個角含1/2角及相鄰線段
自旋轉:有一對相鄰等線段,需要構造旋轉全等
共旋轉:有兩對相鄰等線段,直接尋找旋轉全等
中點旋轉:倍長中點相關線段轉換成旋轉全等問題
配方法
通過把一個解析式利用恆等變形的方法,把其中的某些項配成一個或幾個多項式正整數次冪的和形式解決 數學 問題的方法,叫配方法。
配方法用的最多的是配成完全平方式,它是數學中一種重要的恆等變形的方法,它的應用十分非常廣泛,在因式分解、化簡根式、解方程、證明等式和不等式、求函數的極值和解析式等方面都經常用到它。
學會運用函數與方程思想
從分析問題的數量關系入手,適當設定未知數,把所研究的數學問題中已知量和未知量之間的數量關系,轉化為方程或方程組的數學模型,從而使問題得到解決的思維方法,這就是方程思想。用方程思想解題的關鍵是利用已知條件或公式、定理中的已知結論構造方程(組)。這種思想在代數、幾何及生活實際中有著廣泛的應用。
以上就是我為大家整理的初中數學模型解題法及技巧有哪些。
4. 初中數學數論證明題,在線等~~快!!!
假設所有的同學兩旁都是兩男或一男一女。任選圈中的一個同學x,起兩旁都是兩男或一男一女。當x把每個同學都取一次,班上每個同學都當了一次中間的同學,都當了兩次兩邊的同學(它左邊或右邊同學的兩邊),相當於每個同學都算了3次,為了保證男女相等,每個同學兩邊的鼻血都是一男一女,則每間隔一個同學都是一男一女間隔的。不妨取一個同學a,順時針排列,假設他是男的,他順時針間隔的第一個同學是女的,再間隔第2個是男的,。。。第24個是男的.
但第24個是a同學逆時針間隔一個的同學,這樣a左邊同學兩邊都是男同學,和前面結論矛盾!
所以,必有一個同學兩邊都是女同學。
如有不懂請說明,我再回答!
5. 初中數學相似三角形定理知識點總結
相似三角形是幾何中重要的證明模型之一,是全等三角形的推廣。全等三角形可以被理解為相似比為1的相似三角形。相似三角形其實是一套定理的集合,它主要描述了在相似三角形是幾何中兩個三角形中,邊、角的關系。下面是我為大家帶來的初中數學相似三角形定理知識點 總結 ,歡迎閱讀。
相似三角形定理
1.相似三角形定義:
對應角相等,對應邊成比例的三角形,叫做相似三角形。
2.相似三角形的表示 方法 :用符號"∽"表示,讀作"相似於"。
3.相似三角形的相似比:
相似三角形的對應邊的比叫做相似比。
4.相似三角形的預備定理:
平行於三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所截成的三角形與原三角形相似。
初中數學相似三角形定理知識點總結
從表中可以看出只要將全等三角形判定定理中的"對應邊相等"的條件改為"對應邊
成比例"就可得到相似三角形的判定定理,這就是我們數學中的用類比的方法,在舊知識的基礎上找出新知識並從中探究新知識掌握的方法。
6.直角三角形相似:
(1)直角三角形被斜邊上的高分成兩個直角三角形和原三角形相似。
(2)如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應成比例,那麼這兩個直角三角形相似。
7.相似三角形的性質定理:
(1)相似三角形的對應角相等。
(2)相似三角形的對應邊成比例。
(3)相似三角形的對應高線的比,對應中線的比和對應角平分線的比都等於相似比。
(4)相似三角形的周長比等於相似比。
(5)相似三角形的面積比等於相似比的平方。
8. 相似三角形的傳遞性
如果△ABC∽△A1B1C1,△A1B1C1∽△A2B2C2,那麼△ABC∽A2B2C2
相關 文章 :
1. 初中數學基礎知識點總結
2. 初一數學知識點公式定理大全
3. 中考數學最全考點分析主要知識點
4. 初中數學必備知識點總結初三數學上冊一二章知識點
5. 四年級數學三角形知識點歸納
6. 初中數學:相似證明中的基本模型
如圖為詳細過程
7. 數學初中證明題技巧
幾何證明題不僅是學生學習過程中的難處,還是教學過程中教師最頭疼的知識,因為它在一定程度上涉及的東西比較多,還比較曲折,導致學生在學習過程中很難對其進行理解,下面是我為大家整理的關於數學初中證明題技巧,希望對您有所幫助。歡迎大家閱讀參考學習!
1數學初中證明題技巧
讀題要細心
有些學生一看到某一題前面部分有似曾相識的感覺,就直接寫答案,這種還沒有弄清楚題目講的是什麼意思,題目讓你求證的是什麼都不知道,這非常不可取,我們應該逐個條件的讀,給的條件有什麼用,在腦海中打個問號,再對應圖形來對號入座,結論從什麼地方入手去尋找,也在圖中找到位置.?
要記.
這里的記有兩層意思.第一層意思是要標記,在讀題的時候每個條件,你要在所給的圖形中標記出來.如給出對邊相等,就用邊相等的符號來表示;第二層意思是要牢記,題目給出的條件不僅要標記,還要記在腦海中,做到不看題,就可以把題目復述出來.?
要引申
難度大一點的題目往往把一些條件隱藏起來,所以我們要會引申,那麼這里的引申就需要平時的積累,平時在課堂上學的基本知識點掌握牢固,平時訓練的一些特殊圖形要熟記,在審題與記的時候要想到由這些條件你還可以得到哪些結論,然後在圖形旁邊標注,雖然有些條件在證明時可能用不上,但是這樣長期的積累,便於以後難題的學習.?
對於讀題這一環節,我們之所以要求這么復雜,是因為在實際證題的過程中,學生找不到證明的思路或 方法 ,很多時候就是由於漏掉了題中某些已知條件或將題中某些已知條件記錯或想當然地添上一些已知條件,而將已知記在心裡並能復述出來就可以很好地避免這些情況的發生.
2初中數學證明題的解題技巧
(一)分析
在教學過程中指導學生用 教學方法 中的分析法,從而一步步對證明思路進行探究。教師可以用那種提問的方式來指導學生,學生會在教師的指導下經過認真的分析、思考、比較等進行問題的解決。然而,關於證明題的相關分析,有以下三種思考方式:1. 正向思維。對於那種相對來說比較簡單的題目,我們可以通過正向對其解題思路進行考慮,這樣可以輕而易舉的做出相關題目。2. 逆向思維 。也就是說,在進行思路分析時,要從相反的方向進行問題的思考,運用這種逆向思維進行解題,可以使學生從不同角度來思考問題,探索解題方法,從而拓寬解題思路,這種逆向思維的方法是需要學生進行掌握的。
在教學過程中,逆向思維是一種很重要的思維方法,在證明題中體現得非常明顯。數學這門科目知識點很少,關鍵是如何將所學的知識進行運用,對於幾何證明題來說,最好的方法就是逆向思維法。如果學生在一定程度上沒有那所謂的做題思路,那就該引起高度重視了,比如:有些同學非常認真的讀完一道題後,不知道該如何進行思路分析,不知道該如何下手,針對這一現象,建議從得出的結論出發。例如:要想證明相等的兩條線段在同一個三角形內,這種題型主要是考慮等角對等邊,就比如這種題型:在三角形ABC中,AE是ABC的外角DAC的平均線,並且AE平行BC,證明AB=AC,那麼,在對它進行相關分析時,如果想要證明兩條邊相等,就得考慮等腰三角形的定義來證明。
證明思路為:因為AE平分角DAC,角DAE=角EAC,又因為AE平行BC,所以角DAE=角B,角EAC=角C,所以角B=角C,所以三角形ABC是等腰三角形,所以AB=AC。這樣,一個證明題就完了。因此,在做這種證明題的時候,要結合所給出的條件,去看還缺少什麼樣的條件與需要證明,證明這些條件的過程中又需要什麼,是否需要在此基礎上做輔助線,按照這樣的思路思考下去,就能夠找到解題的方法,然後將過程寫出來就可以,這是解題過程中最好用的方法。3. 正逆結合。對於從結論中很難分析出思路的那種題目,可以通過結合已知條件進行認真分析,在幾何證明題中已知的條件都會在證明解題過程中用到,比如要想證明角平分線,就要想到哪兩個角相等,或者根據角平分線的相關性質得到哪兩條線段相等等等。用這樣正逆結合的方法來得出解題思路,也是教學中經常用到的,正所謂,正逆結合,百戰百勝。
(二)書寫
在理清解題思路後,就要對解題過程進行書寫,這個過程要格外注意數學符號和數學語言的應用,因為在過程中對它們要求是非常高的,如果寫錯一點,即使思路再對也無濟於事。因此,在書寫完後,要認真檢查,確保准確無誤。當然,幾何證明題還需要學生在課堂結束後進行做練習題,以便增強自身 記憶力 ,提高解題水平。
3初中數學幾何證明題技巧
牢記幾何語言
幾何證明題,要使用幾何語言,這對於剛學幾何的學生來說,僅當又學一門「外語」,並努力盡快地掌握這門「外語」的語言使用和表達能力。
首先,從幾何第一課起,就應該特別注意幾何語言的規范性,要讓學生理解並掌握一些規范性的幾何語句。如:「延長線段AB到點C,使AC=2AB」,「過點C作CD⊥AB,垂足為點D」,「過點A作l∥CD」等,每一句通過上課的教學,課後的輔導,手把手的作圖,表達幾何語言;表達幾何語言後作圖,反復多次,讓學生理解每一句話,看得懂題意。
其次,要注意對幾何語言的理解,幾何語言表達要確切。例如:鈍角的意義是「大於直角而小於平角的叫鈍角」,「大於直角或小於平角的角叫鈍角」,把「而」字說成了「或」字,這就是學習對幾何語言理解不佳,造成的表達不確切。「一字之差」意思各異,在輔導時,注重語言的准確性,對其犯的錯誤反復更正,做到學習之初要嚴謹。
規范推理格式
數學中推理證明的書寫格式有許多種,但最基本的是演繹法,也就是從已知條件出發,根據已經學過的數學概念、公理、定理等知識,順著推理,由「已知」得「推知」,由「推知」得「未知」,逐步地推出求證的結論來。這種證題格式一般叫「演繹法」,課本上的定理證明,例題的證明,多數是採用這種格式。它的書寫形式表達常用語言是「因為…,所以…」特別是一開始學習幾何證明,首先要掌握好這種推理格式,做到規范化。
積累證明思路。
「幾何證明難」最難莫過於沒有思路。怎樣積累證明思路呢?這主要靠聽講,看書時積極思考,不僅弄明白題目是「如何證明?」,還要進一步追究一下,「證明題方法是如何想出來的?」。只有經常這樣獨立思考,才會使自己的思路開闊靈活。隨著證明題難度的增加,還要教會學生用「兩頭湊」的方法,即在同一個證明題的分析過程中,分析法與綜合法並用,來縮短已知與未知之間的距離,在教學安排時,要給其足夠的時間思考,而且重復證明思路,提高對解題思路的理解和應用能力。
4初中數學的方法和技巧
注重數學基礎知識的學習和積累
努力做到課前仔細預習,課上認真聽講,課後及時復習。一直以來,很多同學很不在乎學習數學的基礎知識,認為基礎知識在解題時用不上,尤其是數學的概念,定義和定理在考試時候也不會直接考到,學了也不會有用。其實這種想法是一個非常致命的錯誤,現在有很多學生,學習能力很強,也很有聰明,但在學習中忽視了基礎知識的學習,沒有抓住學習的重點,最後非常遺憾的沒有學好數學。
其實,在中考中,大概有80%的題目都直接或者間接和基礎知識有關系,而只有20%的題目才是我們所謂的難題,但是這些難題也都是由很多基礎的題目綜合而來的。所以要想學數學,首先應該也是必須要學好數學的基礎知識。那麼怎樣學習基礎知識呢?我的方法是 課前預習 ,課中聽講,課後復習。只要這三個方面堅持不懈的結合起來,我相信最後一定能提高學生的數學成績。
培養和鍛煉數學的解題方法和技巧
多做有針對性同時難度適當的同步練習,循序漸進,周而復始。很多同學在學習數學的過程中非常地努力,也知道要做大量的習題,有的甚至還自覺規定每天的做題數量,但是最後數學成績提高也不是很明顯。這是為什麼呢?我想很大程度上是由於這些同學所做的習題沒有針對性。
對於做題,我的觀點是不僅要做題,還要做好題,在這里我想說的是我們學而思的練習都是經過各個老師精挑細選的習題,又經過無數學員的檢驗,可以說是非常有針對性,當然啦現在書店中很多習題資料也很不錯,希望大家能仔細挑選。同時,不僅要針對性練習,更重要的是要對做過的習題不斷地 總結 和 反思 ,總結自己為什麼做錯了,錯在哪裡了,那麼正確的思路又是什麼,等等,只要經過這樣的反復思考,我相信咱們學員的學習成績一定會有一個很大的提高。
5初中數學幾何證明題技巧
教學內容:
十幾減9
第1———2頁。
教學目的:
1、讓學生經歷從實際情況里提出問題,並解決問題的過程,理解十幾減9的計算方法,能准確算出十幾減9的減法算式
2、通過讓學生動手操作、實踐,在實踐中探究解決問題的方法,重視演算法多樣化,發展學生的創新意識和培養求異精神。
3、利用所學知識解決生活中相應的實際問題,體會到數學知識在生活中的重要作用。
教學重、難點:
讓學生通過動手操作實踐,共同合作,探究十幾減9的計算方法。
教具准備:
相應的CAI課件、口算卡片
教學過程:
一、創設情景,提出問題。
猴子賣桃(小猴子有13個桃,小兔買走9個。)
問:小兔買走9個以後還剩幾個?
你是怎樣知道還剩4個?
引導學生說出:小猴原來有13個桃,賣了9個後,還剩下4個。
問:你能根據猴子賣桃的情景列出算式來嗎?
板書:13—9
二、自主探究,領悟演算法。
1、問:怎樣才能准確地算出13—9=?
請同學們認真想一想,可以藉助你手中的學具擺一擺,以四人小組為單位想一想。
2、各小組匯報活動結果。
每個組先派代表上講台演示,發表意見解釋自己的想法。隨後允許同一小組的其他同學對自己組中發言的同學作補充,指導學生有條理的表達。
有的學生會從13個小圓片了一個一個地減連續減去9個剩下4個;
有的學生從10個一堆里減去9個,再把剩下的1個和3個一堆的合在一起,的出剩下4個;
有的學生先減去3個一堆的再從10個一堆了拿走6個剩下4個;
有的學生這樣想:因為9加4等於13,所以13減9等於4;
3、教師對學生想出的正確演算法給予肯定與表揚。
問:在那麼多種演算法中,你最喜歡哪一種演算法?並 說說 你為什麼喜歡這種演算法。
4、用你喜歡的方法計算:
12—9=¨
16—9=¨
三、鞏固練習,深化運用。
1、「想想做做」第1題;
學生看圖,理解圖意後,讓學生用自己喜歡的演算法准確計算15—9=17—9=
2、對比練習;
以小組合作為單位填寫,然後說說上下兩題有什麼聯系?
例如:當你看到9+2=11時,你會想到什麼?初步讓學生認識加、減互逆關系。
3、口算競賽(完成書本2頁第5題);
讓知道答案的學生馬上站起來回答。
4、歸類整理;
把第5題的算式按規律排列整理如下:
11—9= 14—9= 17—9=
12—9= 15—9= 18—9=
13—9= 16—9= 19—9=
5、引導學生觀察,初步感知十幾減幾的技巧。
3初中數學幾何證明題技6
教學目標
1、使學生認識時間單位年、月、日,了解它們之間的關系。
2、培養學生感受數學和實際生活的緊密聯系,激發學生學習的積極性,同時對學生進行珍惜時間的 教育 。
教學重難點:認識時間單位年、月、日,了解它們之間的關系,記住各月的天數。
教具、學具。掛圖、年歷
一、創設情境 引入新課
1、同學們,你們知道今天是幾月幾日嗎?(學生回答)你是怎麼知道的?
2、生活中每天都有很多事情發生,在一年中有很多值得紀念的重大節日,請同學們仔細觀察(出示掛圖)圖上描述的是什麼事?你知道這些事發生的時間嗎?把你知道的跟同學說一說好嗎?
3、你們還知道哪些有意義的日子呢?
4、今天我們就來學習有關年、月、日的知識。
板書:年、月、日
二、自主探索 合作學習
1、認識年歷
師:請同學們拿出自己的年歷,認真觀察,你可以從年歷上直接了解到哪些知識?
①讓學生獨自觀察
②同桌討論
③你們能根據年歷回答問題嗎?
一年有幾個月?板書:一年12個月
哪幾個月是31天?哪幾個月是30天?
二月有多少天?一年有多少天?
板書:大月(31天):一、三、五、七、八、十、十二、
小月(30天):四、六、九、十一、
特殊月(28天):二
2、教學生記天數的方法
我們知道了每個月的天數,也知道大月和小月,有沒有好的辦法讓我們很快的記住每個月的天數呢?
(1)可以用拳頭幫助記憶。凸起的地方每月是31天,凹下的地方每月是30天(二月除外)
師做示範 學生動手數一數
(2)老師再介紹一首兒歌,幫你們記住一年中的大月。( 出示兒歌)
板書:一、三、五、七、八、十、臘,三十一天永不差。
3考考你
你們都記住了嗎?現在老師可要考考你們了。
①你的生日是幾月幾日?你父母的生日是幾月幾日,用筆在年歷上畫出來,並說說是大月還是小月。
②老師的生日是大月的第二個月,你知道是幾月嗎?
4、游戲
我們一起輕松一下,玩個小游戲吧,老師報月份,如果是大月就請同學們舉右手,是小月就請同學們舉左手,明白了嗎?
三、鞏固練習
完成課本48頁做一做
四、本課小結;
1、通過這節課的學習,你們都學會了哪些知識?
2、教師總結:
板書設計: 年、月、日
一年12個月
大月(31天):一、三、五、七、八、十、十二
小月(30天):四、六、九、十一
特殊月(28天):二
一、三、五、七、八、十、臘,三十一天永不差。
3初中數學幾何證明題技7
教學目標:
1、知識目標:結合生活實際,理解多一些、多得多、少一些、少得多的含義;能在具體情境中把握數的相對大小關系;發展學生的數感。
2、情感、能力目標:培養學生合作交流、勇於發表意見等良好的學習習慣;滲透估計的思想,發展估計意識。
教學重難點:
理解多一些、多得多、少一些、少得多的含義;在具體情境中把握數的相對大小關系。
教學流程:
一、談話激趣,鋪塹導入。
1、談話激趣。
師:小朋友,你們去過養殖場嗎?今天,小灰兔朋友要帶我們去參觀動物王國里的養殖場,你們想去嗎?
導語:好了!現在我們可以去參觀動物王國里的養殖場了,大
家請看(師出示課件)。
【設計意圖:本節課通過創設「參觀動物王國里的養殖場」,旨在激發學生的興趣。但,部分學生對「多得多、多一些、少得多、少一些」理解困難,再加上教材的插圖不夠直觀形象,不能讓學生一目瞭然:「X比X多得多,X比X多一些」。因此,在這里,通過引導學生解決小灰兔帶來的問題,讓學生直觀形象的感受「多得多……」的含義,讓數學模型經歷從直觀到抽象的過渡,為新知的探索起到鋪塹的作用。】
二、引導交流,理解新知。
(一)觀察。師:這就是動物王國里的養殖場,多美麗呀!大家仔細瞧瞧,圖上有什麼?跟同桌的同學說一說。
(二)反饋。學生自由發言,師根據學生的發言並板書:
雞85隻鴨42隻鵝34隻
(三)說一說。師:請你們用剛才的「多得多、多一些、少得多、少一些」在小組里說一說,誰多誰少?(師巡視指導,幫助個別學習困難的小組。)
(四)想一想。課件師:請大家打開課本觀察「想一想」的內容,羊可能有多少只?通過看圖,你還知道了什麼?(由學生自由回答,師再板書,讀題後讓學生獨立完成。反饋交流時,讓 學生 自我評價 或評價他人。)
【設計意圖:在上個環節的基礎上,學生較輕松地完成「說一說」這部分內容,運用小組交流的形式,描述數量間的關系,進一步發展學生的數感。在反饋交流時,教師引導學生進行自評和他評,有助於幫助學生認識自我,建立信心。】
三、練習鞏固,扎實新知。
師:小朋友!闖關游戲開始了,今天要闖三關,大家可要努力哦,比一比,看誰得的紅旗多!
1、P31第1題。引導學生看清題意,再讓生獨立解答,最後集中交流,進行評價。
2、P31第2題。幫助理解題意,讓生認真思考後做答,交流評價。
3、P31第3題。指名生說明題意,再獨立思考做答。(反饋時,可能會出現兩個答案,只要理由正確,可以加以肯定。)
4、游戲。
(1)師:恭喜小朋友闖完這三關,現在我們來玩個數學游戲,好不好呀?嗯,請大家注意了:
老師在紙上寫了一個兩位數,你們猜一猜,是多少?(根據學生的回答,教師用「多得多、多一些、少得多、少一些」加以提示。)
(2)30頁,兔子有多少只?
四、總結。
師:今天玩得開心嗎?你學會了什麼?
調查家裡成員的年齡,並用「多得多,多一些,少得多,少一些」說一說。
數學初中證明題技巧相關 文章 :
★ 初中數學的解題方法有哪些
★ 做題技巧數學初中及注意事項
★ 初中解數學壓軸題技巧
★ 初中數學三角形全等解題技巧
★ 初中數學選擇填空答題技巧大全
★ 初二數學學習方法技巧整理
★ 高中數學證明題的解題方法有哪些
★ 初中數學壓軸題技巧有哪些
★ 初中數學幾何做輔助線方法技巧
★ 初中數學復習方法大全
var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();8. 初中數學飛鏢模型怎麼證明
延長AD交BC於點M
∵∠ADC=∠DMC+∠C 三角形一外角等於不相鄰兩內角和。
∠DMC=∠A+∠B
∴∠D=∠A+∠B+∠C
9. 「12345」模型 求證
網路文庫有付款的資料 可以解決這個問題
初中數學-12345模型