⑴ 中國的數學家在研究什麼對我們的生活有什麼用
數學一般都是超前的,而且以後一定會有用的,現在數學越來越抽象了,主流方向現在大都在研究微分幾何.
⑵ 5位數學家的簡介與主要成果
1、祖沖之
祖沖之,曾經算出月球繞地球一周為時27.21223日,與現代公認的27.21222日幾乎沒有誤差。月球上許多火山口中的一個被命名為「祖沖之」。祖沖之還曾經計算出圓周率應該在3.1415926和3.1415927之間。
法國巴黎的「發現宮」科學博物館中也有祖沖之的大名與他所發現的圓周率值並列。在莫斯科國立大學禮堂廊壁上,用彩色大理石鑲嵌的世界各國著名的科學家肖像中,也有中國的祖沖之和李時珍。
2、華羅庚
華羅庚(1910.11.12—1985.6.12),漢族,籍貫江蘇金壇,祖籍江蘇省丹陽。世界著名數學家,中國科學院院士,美國國家科學院外籍院士,第三世界科學院院士,聯邦德國巴伐利亞科學院院士。中國第一至第六屆全國人大常委會委員。
他是中國解析數論、矩陣幾何學、典型群、自守函數論與多元復變函數論等多方面研究的創始人和開拓者,也是中國在世界上最有影響力的數學家之一,被列為芝加哥科學技術博物館中當今世界88位數學偉人之一。國際上以華氏命名的數學科研成果有「華氏定理」、「華氏不等式」、「華—王方法」等。
3、約翰·卡爾·弗里德里希·高斯
1777年4月30日-1855年2月23日,享年77歲,德國著名數學家、物理學家、天文學家、大地測量學家,近代數學奠基者之一。高斯被認為是歷史上最重要的數學家之一,並享有「數學王子」之稱。
高斯和阿基米德、牛頓、歐拉並列為世界四大數學家。一生成就極為豐碩,以他名字「高斯」命名的成果達110個,屬數學家中之最。他對數論、代數、統計、分析、微分幾何、大地測量學、地球物理學、力學、靜電學、天文學、矩陣理論和光學皆有貢獻。
4、阿基米德
公元前287年—公元前212年,偉大的古希臘哲學家、網路式科學家、數學家、物理學家、力學家,靜態力學和流體靜力學的奠基人,並且享有「力學之父」的美稱,阿基米德和高斯、牛頓並列為世界三大數學家。阿基米德曾說過:「給我一個支點,我就能撬起整個地球。」
阿基米德確立了靜力學和流體靜力學的基本原理。給出許多求幾何圖形重心,包括由一拋物線和其網平行弦線所圍成圖形的重心的方法。阿基米德證明物體在液體中所受浮力等於它所排開液體的重量,這一結果後被稱為阿基米德原理。他還給出正拋物旋轉體浮在液體中平衡穩定的判據。
5、勒內·笛卡爾
1596年3月31日生於法國安德爾-盧瓦爾省的圖賴訥(現笛卡爾,因笛卡爾得名),1650年2月11日逝世於瑞典斯德哥爾摩,是世界著名的法國哲學家、數學家、物理學家。他對現代數學的發展做出了重要的貢獻,因將幾何坐標體系公式化而被認為是解析幾何之父。
他還是西方現代哲學思想的奠基人,是近代唯物論的開拓者且提出了「普遍懷疑」的主張。黑格爾稱他為「現代哲學之父」。他的哲學思想深深影響了之後的幾代歐洲人,開拓了所謂「歐陸理性主義」哲學。堪稱17世紀的歐洲哲學界和科學界最有影響的巨匠之一,被譽為「近代科學的始祖」。
⑶ 數學現在又有哪些發展呢新發現或者數學家們現在在研究些什麼呢 似乎太簡單了些
現在又有人致力統一數學, 由此可見,數學不斷發展. 數學,會在今後的日子裡,演變成一種以點為中心的數據,一般數學家都在研究函數,將他的次數增加
可是也就這些啊,現在數學在前幾年都已經基本形成,沒什麼可研究的理論了,就剩函數了.
有問題追問我
望採納!
⑷ 現代數學研究什麼
什麼是數學?有人說:「數學,不就是數的學問嗎?」
這樣的說法可不對。因為數學不光研究「數」,也研究「形」,大家都很熟悉的三角形、正方形,也都是數學研究的對象。
歷史上,關於什麼是數學的說法更是五花八門。有人說,數學就是關聯;也有人說,數學就是邏輯,「邏輯是數學的青年時代,數學是邏輯的壯年時代。」
那麼,究竟什麼是數學呢?
偉大的革命導師恩格斯,站在辯證唯物主義的理論高度,通過深刻分析數學的起源和本質,精闢地作出了一系列科學的論斷。恩格斯指出:「數學是數量的科學」,「純數學的對象是現實世界的空間形式和數量關系」。根據恩格斯的觀點,較確切的說法就是:數學——研究現實世界的數量關系和空間形式的科學。
數學可以分成兩大類,一類叫純粹數學,一類叫應用 數學。
純粹數學也叫基礎數學,專門研究數學本身的內部規律。中小學課本里介紹的代數、幾何、微積分、概率論知識,都屬於純粹數學。純粹數學的一個顯著特點,就是暫時撇開具體內容,以純粹形式研究事物的數量關系和空間形式。例如研究梯形的面積計算公式,至於它是梯形稻田的面積,還是梯形機械零件的面積,都無關緊要,大家關心的只是蘊含在這種幾何圖形中的數量關系。
應用數學則是一個龐大的系統,有人說,它是我們的全部知識中,凡是能用數學語言來表示的那一部分。應用數學著限於說明自然現象,解決實際問題,是純粹數學與科學技術之間的橋梁。大家常說現在是信息社會,專門研究信息的「資訊理論」,就是應用數學中一門重要的分支學科, 數學有3個最顯著的特徵。
高度的抽象性是數學的顯著特徵之一。數學理論都算有非常抽象的形式,這種抽象是經過一系列的階段形成的,所以大大超過了自然科學中的一般抽象,而且不僅概念是抽象的,連數學方法本身也是抽象的。例如,物理學家可以通過實驗來證明自己的理論,而數學家則不能用實驗的方法來證明定理,非得用邏輯推理和計算不可。現在,連數學中過去被認為是比較「直觀」的幾何學,也在朝著抽象的方向發展。根據公理化思想,幾何圖形不再是必須知道的內容,它是圓的也好,方的也好,都無關緊要,甚至用桌子、椅子和啤酒杯去代替點、線、面也未嘗不可,只要它們滿足結合關系、順序關系、合同關系,具備有相容性、獨立性和完備性,就能夠構成一門幾何學。
體系的嚴謹性是數學的另一個顯著特徵。數學思維的正確性表現在邏輯的嚴謹性上。早在2000多年前,數學家就從幾個最基本的結論出發,運用邏輯推理的方法,將豐富的幾何學知識整理成一門嚴密系統的理論,它像一根精美的邏輯鏈條,每一個環節都銜接得絲絲入扣。所以,數學一直被譽為是「精確科學的典範」。
廣泛的應用性也是數學的一個顯著特徵。宇宙之大,粒子之微,火箭之速,化工之巧,地球之變,生物之謎,日用之繁,無處不用數學。20世紀里,隨著應用數學分支的大量涌現,數學已經滲透到幾乎所有的科學部門。不僅物理學、化學等學科仍在廣泛地享用數學的成果,連過去很少使用數學的生物學、語言學、歷史學等等,也與數學結合形成了內容豐富的生物數學、數理經濟學、數學心理學、數理語言學、數學歷史學等邊緣學科。
各門科學的「數學化」,是現代科學發展的一大趨勢。
⑸ 關於1+1 數學家們到底在研究些什麼呢
史上和質數有關的數學猜想中,最著名的當然就是「哥德巴赫猜想」了。
1742年6月7日,德國數學家哥德巴赫在寫給著名數學家歐拉的一封信中,提出了兩個大膽的猜想:
一、任何不小於6的偶數,都是兩個奇質數之和;
二、任何不小於9的奇數,都是三個奇質數之和。
這就是數學史上著名的「哥德巴赫猜想」。顯然,第二個猜想是第一個猜想的推論。因此,只需在兩個猜想中證明一個就足夠了。
同年6月30日,歐拉在給哥德巴赫的回信中, 明確表示他深信哥德巴赫的這兩個猜想都是正確的定理,但是歐拉當時還無法給出證明。由於歐拉是當時歐洲最偉大的數學家,他對哥德巴赫猜想的信心,影響到了整個歐洲乃至世界數學界。從那以後,許多數學家都躍躍欲試,甚至一生都致力於證明哥德巴赫猜想。可是直到19世紀末,哥德巴赫猜想的證明也沒有任何進展。證明哥德巴赫猜想的難度,遠遠超出了人們的想像。有的數學家把哥德巴赫猜想比喻為「數學王冠上的明珠」。
我們從6=3+3、8=3+5、10=5+5、……、100=3+97=11+89=17+83、……這些具體的例子中,可以看出哥德巴赫猜想都是成立的。有人甚至逐一驗證了3300萬以內的所有偶數,竟然沒有一個不符合哥德巴赫猜想的。20世紀,隨著計算機技術的發展,數學家們發現哥德巴赫猜想對於更大的數依然成立。可是自然數是無限的,誰知道會不會在某一個足夠大的偶數上,突然出現哥德巴赫猜想的反例呢?於是人們逐步改變了探究問題的方式。
1900年,20世紀最偉大的數學家希爾伯特,在國際數學會議上把「哥德巴赫猜想」列為23個數學難題之一。此後,20世紀的數學家們在世界范圍內「聯手」進攻「哥德巴赫猜想」堡壘,終於取得了輝煌的成果。
20世紀的數學家們研究哥德巴赫猜想所採用的主要方法,是篩法、圓法、密率法和三角和法等等高深的數學方法。解決這個猜想的思路,就像「縮小包圍圈」一樣,逐步逼近最後的結果。
1920年,挪威數學家布朗證明了定理「9+9」,由此劃定了進攻「哥德巴赫猜想」的「大包圍圈」。這個「9+9」是怎麼回事呢?所謂「9+9」,翻譯成數學語言就是:「任何一個足夠大的偶數,都可以表示成其它兩個數之和,而這兩個數中的每個數,都是9個奇質數之和。」 從這個「9+9」開始,全世界的數學家集中力量「縮小包圍圈」,當然最後的目標就是「1+1」了。
1924年,德國數學家雷德馬赫證明了定理「7+7」。很快,「6+6」、「5+5」、「4+4」和「3+3」逐一被攻陷。1957年,我國數學家王元證明了「2+3」。1962年,中國數學家潘承洞證明了「1+5」,同年又和王元合作證明了「1+4」。1965年,蘇聯數學家證明了「1+3」。
1966年,我國著名數學家陳景潤攻克了「1+2」,也就是:「任何一個足夠大的偶數,都可以表示成兩個數之和,而這兩個數中的一個就是奇質數,另一個則是兩個奇質數的和。」這個定理被世界數學界稱為「陳氏定理」。
由於陳景潤的貢獻,人類距離哥德巴赫猜想的最後結果「1+1」僅有一步之遙了。但為了實現這最後的一步,也許還要歷經一個漫長的探索過程。有許多數學家認為,要想證明「1+1」,必須通過創造新的數學方法,以往的路很可能都是走不通的。
哥德巴赫是德國一位中學教師,也是一位著名的數學家,生於1690年,1725年當選為俄國彼得堡科學院院士。1742年,哥德巴赫在教學中發現,每個不小於6的偶數都是兩個素數(只能被和它本身整除的數)之和。如6=3+3,12=5+7等等。公元1742年6月7日哥德巴赫寫信給當時的大數學家歐拉,提出了以下的猜想:
(a)任何一個>=6之偶數,都可以表示成兩個奇質數之和。
(b) 任何一個>=9之奇數,都可以表示成三個奇質數之和。
這就是著名的哥德巴赫猜想。歐拉在6月30日給他的回信中說,他相信這個猜想是正確的,但他不能證明。敘述如此簡單的問題,連歐拉這樣首屈一指的數學家都不能證明,這個猜想便引起了許多數學家的注意。從哥德巴赫提出這個猜想至今,許多數學家都不斷努力想攻克它,但都沒有成功。當然曾經有人作了些具體的驗證工作,例如: 6 = 3 + 3, 8 = 3 + 5, 10 = 5 + 5 = 3 + 7, 12 = 5 + 7, 14 = 7 + 7 = 3 + 11,16 = 5 + 11, 18 = 5 + 13, ……等等。有人對33×108以內且大過6之偶數一一進行驗算,哥德巴赫猜想(a)都成立。但嚴格的數學證明尚待數學家的努力。
從此,這道著名的數學難題引起了世界上成千上萬數學家的注意。200年過去了,沒有人證明它。哥德巴赫猜想由此成為數學皇冠上一顆可望不可及的"明珠"。 人們對哥德巴赫猜想難題的熱情,歷經兩百多年而不衰。世界上許許多多的數學工作者,殫精竭慮,費盡心機,然而至今仍不得其解。
到了20世紀20年代,才有人開始向它靠近。1920年挪威數學家布朗用一種古老的篩選法證明,得出了一個結論:每一個比大的偶數都可以表示為(99)。這種縮小包圍圈的辦法很管用,科學家們於是從(9十9)開始,逐步減少每個數里所含質數因子的個數,直到最後使每個數里都是一個質數為止,這樣就證明了哥德巴赫猜想。
目前最佳的結果是中國數學家陳景潤於1966年證明的,稱為陳氏定理:「任何充分大的偶數都是一個質數與一個自然數之和,而後者僅僅是兩個質數的乘積。」通常都簡稱這個結果為大偶數可表示為 「1 + 2」的形式。
在陳景潤之前,關於偶數可表示為 s個質數的乘積 與t個質數的乘積之和(簡稱「s + t」問題)之進展情況如下:
1920年,挪威的布朗證明了『「9 + 9」。
1924年,德國的拉特馬赫證明了「7 + 7」。
1932年,英國的埃斯特曼證明了「6 + 6」。
1937年,義大利的蕾西先後證明了「5 + 7」, 「4 + 9」, 「3 + 15」和「2 + 366」。
1938年,蘇聯的布赫夕太勃證明了「5 + 5」。
1940年,蘇聯的布赫夕太勃證明了「4 + 4」。
1948年,匈牙利的瑞尼證明了「1 + c」,其中c是一很大的自然數。
1956年,中國的王元證明了「3 + 4」。
1957年,中國的王元先後證明了 「3 + 3」和「2 + 3」。
1962年,中國的潘承洞和蘇聯的巴爾巴恩證明了「1 + 5」, 中國的王元證明了「1 + 4」。
1965年,蘇聯的布赫 夕太勃和小維諾格拉多夫,及 義大利的朋比利證明了「1 + 3 」。
1966年,中國的陳景潤證明了 「1 + 2 」。
從1920年布朗證明"9+9"到1966年陳景潤攻下「1+2」,歷經46年。自"陳氏定理"誕生至今的30多年裡,人們對哥德巴赫猜想猜想的進一步研究,均勞而無功。
布朗篩法的思路是這樣的:即任一偶數(自然數)可以寫為2n,這里n是一個自然數,2n可以表示為n個不同形式的一對自然數之和: 2n=1+(2n-1)=2+(2n-2)=3+(2n-3)=…=n+n 在篩去不適合哥德巴赫猜想結論的所有那些自然數對之後(例如1和2n-1;2i和(2n-2i),i=1,2,…;3j和(2n-3j),j=2,3,…;等等),如果能夠證明至少還有一對自然數未被篩去,例如記其中的一對為p1和p2,那麼p1和p2都是素數,即得n=p1+p2,這樣哥德巴赫猜想就被證明了。前一部分的敘述是很自然的想法。關鍵就是要證明'至少還有一對自然數未被篩去'。目前世界上誰都未能對這一部分加以證明。要能證明,這個猜想也就解決了。
然而,因大偶數n(不小於6)等於其對應的奇數數列(首為3,尾為n-3)首尾挨次搭配相加的奇數之和。故根據該奇數之和以相關類型質數+質數(1+1)或質數+合數(1+2)(含合數+質數2+1或合數+合數2+2)(註:1+2 或 2+1 同屬質數+合數類型)在參與無限次的"類別組合"時,所有可發生的種種有關聯系即1+1或1+2完全一致的出現,1+1與1+2的交叉出現(不完全一致的出現),同2+1或2+2的"完全一致",2+1與2+2的"不完全一致"等情況的排列組合所形成的各有關聯系,就可導出的"類別組合"為1+1,1+1與1+2和2+2,1+1與1+2,1+2與2+2,1+1與2+2,1+2等六種方式。因為其中的1+2與2+2,1+2 兩種"類別組合"方式不含1+1。所以1+1沒有覆蓋所有可形成的"類別組合"方式,即其存在是有交替的,至此,若可將1+2與2+2,以及1+2兩種方式的存在排除,則1+1得證,反之,則1+1不成立得證。然而事實卻是:1+2 與2+2,以及1+2(或至少有一種)是陳氏定理中(任何一個充分大的偶數都可以表示為兩個素數的和,或一個素數與兩個素數乘積的和),所揭示的某些規律(如1+2的存在而同時有1+1缺失的情況)存在的基礎根據。所以1+2與2+2,以及1+2(或至少有一種)"類別組合"方式是確定的,客觀的,也即是不可排除的。所以1+1成立是不可能的。這就徹底論證了布朗篩法不能證"1+1"。
由於素數本身的分布呈現無序性的變化,素數對的變化同偶數值的增長二者之間不存在簡單正比例關系,偶數值增大時素數對值忽高忽低。能通過數學關系式把素數對的變化同偶數的變化聯系起來嗎?不能!偶數值與其素數對值之間的關系沒有數量規律可循。二百多年來,人們的努力證明了這一點,最後選擇放棄,另找途徑。於是出現了用別的方法來證明歌德巴赫猜想的人們,他們的努力,只使數學的某些領域得到進步,而對歌德巴赫猜想證明沒有一點作用。
歌德巴赫猜想本質是一個偶數與其素數對關系,表達一個偶數與其素數對關系的數學表達式,是不存在的。它可以從實踐上證實,但邏輯上無法解決個別偶數與全部偶數的矛盾。個別如何等於一般呢?個別和一般在質上同一,量上對立。矛盾永遠存在。歌德巴赫猜想是永遠無法從理論上,邏輯上證明的數學結論。
⑹ 你覺得數學家究竟都在研究什麼呢
那麼,數學家究竟都在研究什麼呢?或者說數學是由哪些部分組成的?傳統上,我們可以將數學分為兩大類:研究數學本身的純數學和應用於解決現實問題的應用數學。但是這種分類法並不十分清晰,許多領域起初是按照純數學發展的,但後來卻發現了意想不到的應用。許多領域之間也有著非常緊密的關系,因此,如果要精確地為數學分類的話,應該是一個復雜的網路。
而在本文中,我們將會帶領讀者簡單地了解數學的五大部分:數學基礎、代數學、分析學、幾何學和應用數學。
1.數學基礎
數學基礎研究的是邏輯或集合論中的問題,它們是數學的語言。邏輯與集合論領域思考的是數學本身的執行框架。在某種程度上,它研究的是證明與數學現實的本質,與哲學接近。
數理邏輯和基礎(Mathematical logic and foundations)
數理邏輯是這一部分的核心,但是對邏輯法則的良好理解產生於它們第一次被使用之後。除了在計算機科學、哲學和數學中正式地使用了基礎的命題邏輯之外,這一領域還涵蓋了普通邏輯和證明論,最終形成了模型論。在此,一些著名的結果包括哥德爾不完全性定理以及與遞歸論相關的丘奇論題。
2.代數學
代數是對計數、算術、代數運算和對稱性的一些關鍵的概念進行提煉而發展的。通常來說,這些領域僅通過幾個公理就可定義它們的研究對象,然後再考慮這些對象的示例、結構和應用。其他非常偏代數的領域包括代數拓撲、信息與通信,以及數值分析。
數論(Number theory)
數論是純數學中最古老、也是最龐大的分支之一。顯然,它關心的是與數字有關的問題,這通常是整數或有理數(分數)。除了涉及到全等性、可除性、素數等基本主題之外,數論現在還包括對環與數域的非常偏代數的研究;還有用於漸近估計和特殊函數的分析方法和幾何主題;除此之外,它與密碼學、數學邏輯甚至是實驗科學之間都存在著重要的聯系。
群論(Group theory)
群論研究的是那些定義了可逆結合的「乘積」運算的集合。這包括了其他數學對象的對稱集合,使群論在所有其他數學中佔有一席之地。有限群也許是最容易被理解的,但矩陣群和幾何圖形的對稱性同樣也是群的中心示例。
⑺ 數學四大領域都研究什麼
1.算術的研究 主要是指《高斯的名著《算術研究》》 1801年,高斯的名著《算術研究》問世。《算術研究》是用拉丁文寫成的。這部書是高斯大學畢業前夕開始撰寫的,前後花了三年時間。1800年,高斯將手稿寄給法國科學院,請求出版,卻遭到拒絕,於是高斯只好自籌資金發表。 目錄 內容範圍 學術意義 核心課題 同餘理論 二次互反律 二次互反律發展型的理論 數論問題中復數的作用 首先是對復數的承認 復數帶進了數論內容範圍 學術意義核心課題 同餘理論 二次互反律 二次互反律發展型的理論數論問題中復數的作用 首先是對復數的承認 復數帶進了數論內容範圍在這本書的序言一開頭,高斯明確地說明了本書的范圍:「本書所研究的是數學中的整數部分,分數和無理數不包括在內。」 [編輯本段]學術意義《算術研究》是一部劃時代的作品,它結束了19世紀以前數論的無系統狀態。在這部書中,高斯對前人在數論中的一切傑出而又零星的成果予以系統的整理,並積極加以推廣,給出了標准化的記號,把研究的問題和解決這些問題的已知方法進行了分類,還引進了新的方法。 [編輯本段]核心課題全書共有三個核心課題:同餘理論、齊式論及剩餘論和二次互反律。這些都是高斯貢獻給數論的卓越成就。 同餘理論同餘是《算術研究》中的一個基本研究課題。這個概念不是高斯首先提出的,但是給同餘引入現代的符號並予以系統研究的卻是高斯。他詳細地討論了同餘數的運算、多項式同餘式的基本定理以及冪的同餘等各種問題。他還運用冪的同餘理論證明了費馬小定理。 二次互反律二次互反律是高斯最得意的成果之一,它在數論中佔有極為重要的地位。正如美國現代數學家狄克遜(1874—1954)所說:「它是數論中最重要的工具,並且在數論發展史上佔有中心位置。」其實,高斯早在1796年就已經得出了這個定理及其證明。發表在《算術研究》中的則是另一種證明。 二次互反律發展從二次互反律出發,高斯相繼引出了雙二次互反律和三次互反律,以及與此相聯系的雙二次和三次剩餘理論。為了使三次和雙二次剩餘理論優美而簡單,高斯又發展出了復整數和復整數數論;而它的進一步結果必然是代數數理論,這方面由高斯的學生戴德金(1831—1916)作出了決定性的貢獻。 [編輯本段]型的理論在《算術研究》中,高斯出乎尋常的以最大的篇幅討論了型的理論。他從拉格朗日的著作中抽象出了型的等價概念後,便一鼓作氣地提出了一系列關於型的等價定理和型的復合理論,他的工作有效地向人們展現了型的重要性——用於證明任何多個關於整數數的定理。正是由於高斯的帶領,使型的理論成為19世紀數論的一個主要課題。高斯關於型和型類的幾何表式的論述是如今所謂數的幾何學的開端。 [編輯本段]數論問題中復數的作用高斯對數論問題的處理,有許多涉及到復數。 首先是對復數的承認這是個老問題。18、19世紀不少傑出的數學家都曾被「復數究竟是什麼?」搞不清楚。萊布尼茲、歐拉等數學大師對此一籌莫展。高斯在代數基本定理的證明中無條件地使用了復數。這使得原先僅從運算通行性這點考慮對復數的承認,擴大到在重大的代數問題的證明中來確認復數的地位。高斯以其對該定理的高超證明,使數學界不僅對高斯而且對復數刮目相待。 復數帶進了數論高斯不僅如此,他又把復數帶進了數論,並且創立了復整數理論。在這一理論中,高斯證明了復整數在本質上具有和普通整數相同的性質。歐幾里得在普通整數中證明了算術基本定理——每個整數可唯一地分解為素數的乘積,高斯則在復整數中得出並證明,只要不把四個可逆元素(±1,±i)作為不同的因數,那麼這個唯一分解定理對復數也成立。高斯還指出,包括費馬大定理在內的普通素數的許多定理都可能轉化為復數的定理(擴大到復數領域)。 [編輯本段]當時的評價《算術研究》似乎任何一個學過中學普通代數的人都可以理解,但是,它完全不是給初學者看的。在當時,讀懂這本書的人較少。困難不是詳細的計算示例而是對主題的理解和對深奧思路的認識。由於全書有7個部分,人們風趣地稱它是部「加七道封漆的著作」。 [編輯本段]傳播《算術研究》出版後,很多青年數學家紛紛購買此書並加以研究,狄利克雷(1805—1859)就是其中之一。狄利克雷是德國著名數學家,對分析、數論等有多方面的貢獻。他把《算術研究》視為心愛的寶貝,把書藏在罩袍里貼胸的地方,走到哪兒帶到哪兒,一有空就拿出來閱讀。晚上睡覺的時候,把它墊在枕頭下面,在睡前還讀上幾段。功夫不負有心人,憑著這股堅韌不拔的毅力,狄利克雷終於第一個打開了「七道封漆」。後來他以通俗的形式對《算術研究》作了詳細的介紹和解釋,使這部艱深的作品逐漸為較多的人所理解和掌握。 [編輯本段]數學界的認可關於《算術研究》和狄利克雷之間還有一段感人的故事。1849年7月16日,正好是高斯獲得博士學位50周年。哥廷根大學舉行慶祝活動,其中有一個別出心裁的節目,他們要高斯用《算術研究》中一頁原稿來點燃自己的煙斗。狄利克雷正好站在高斯身旁,他看到這個情景完全驚呆了。在最後一剎那,他不顧一切地從自己恩師的手中搶下了這頁原稿,並把它珍藏起來。這頁手稿直到狄利克雷逝世以後,編輯人員在整理他的遺稿中才重新發現了它。 《算術研究》發表後,拉格朗日曾經悲觀地以為「礦源已經挖盡」、數學正瀕臨絕境,當他看完《算術研究》後興奮地看到了希望的曙光。這位68歲高齡的老人致信高斯表示由衷的祝賀: 「您的《算術研究》已立刻使您成為第一流的數學家。我認為,最後一章包含了最優美的分析的發現。為尋找這一發現,人們作了長時間的探索。……相信我,沒有人比我更真誠地為您的成就歡呼。」 關於這部著作,19世紀德國著名數學史家莫里茨·康托曾發表過高見,他說: 「高斯曾說:『數學是科學的女皇,數論則是數學的女皇。』如果這是真理,我們還可以補充一點:《算術研究》是數論的憲章。」 《算術研究》是高斯一生中的巨著。暮年高斯在談到這部書時說:「《算術研究》是歷史的財富。」 [編輯本段]高斯的成就高斯原本計劃繼續撰寫《算術研究》第2卷,但由於工作的變化和研究興趣的轉移,這一計劃未能實現。 高斯的許多數學成就都是在他去世後才被人們發現的。從1796年3月30日高斯用尺規作出正17邊形後,他開始記科學日記,並且長期堅持下來,到1814年7月9日。高斯的科學日記是1898年哥廷根皇家學會為了研究高斯,向高斯的孫子借來的。從此,這本科學日記的內容才在高斯逝世43年後流傳。這本日記共146項研究成果,由於僅供個人使用,所以每一條記錄往往只寫三言兩語,十分簡短。有的條目簡單得甚至專家也摸不著頭腦。 1796年10月11日, Vicimus GEGAN 1799年4月8日, 這兩項研究成果,至今仍是個謎。 在1796年7月10日中有這樣一條日記: EYPHKA!num=△+△+△ EYPHKA是希臘文找到了的意思。當年,阿基米德在洗澡的時候突然發現了浮力定律,興奮地從浴缸一躍而起,在大街上狂奔高喊的就是「EYPHKA!」高斯在這里找到了費馬提出的一個困難定理的證明:每個正整數是三個三角數之和。 高斯的科學日記一經披露,轟動了整個科學界。人們第一次了解到,有許多重大成果高斯實際上早就發現,而公開發表得很晚,有的甚至生前根本沒有發表。有關橢圓函數雙周期性的內容一直到日記發表的時候人們才知道,以致這個重大成果在日記里整整沉睡了100年。1797年3月19日的一條日記清楚表明,高斯已經發現了這個成果;後來又有一條,說明高斯還進一步認識到一般情況下的雙周期性。這個問題後來經過雅可比(1804—1851)和阿貝爾獨立研究發展,才成為19世紀函數論的核心。類似的例子不勝枚舉。 這樣大量的重大發現在日記里竟被埋沒了幾十年甚至一個世紀!面對這一不可思議的事實,數學家無不大為震驚。如果及時發表這些內容,無疑會給高斯帶來空前的榮譽,因為日記中的任何一項成果都是當時世界第一流的。如果及時發表這些內容,就可以免得後來的數學家在許多重要領域中的苦苦摸索,數學史因而將大大改寫。有的數學家估計,數學的發展可能要比現在先進半個世紀之多。 [編輯本段]當時的社會環境和高斯個人性格為什麼會出現這現象呢?這與當時的社會環境和高斯個人性格有十分重要的關系。 18世紀,數學界貫穿著激烈的爭論,數學家們各持己見,互相指責,由於缺乏嚴格的論證,在爭論中又產生了種種錯誤。為了證明自己的論點,他們往往自吹自擂,互相諷刺挖苦,這類爭論給高斯留下了深刻的印象。高斯雖然出身貧微,卻和他的父母一樣,有著極強的自尊心,加之他對科學研究的極端慎重的態度,使他生前沒有公開這本日記。他認為,這些研究成果還須進一步加以論證。他在科學研究上遵循的格言是「寧少毋濫」。 高斯這種嚴謹的治學態度,雖然使後輩科學家付出了巨大的代價,但是,也給科學研究帶來了好處。高斯出版的著作至今仍然像第一次出版一樣正確而重要,他的出版物就是法典,比人類其他法典都更高明,因為不論何時何地從未發現其中有任何毛病。 高斯治學的態度正如他在自己的肖像下工工整整地寫下的《李爾王》中的一段格言一樣: 「大自然,您是我的女神,我一生的效勞都服從於您的規律。」 高斯在數學領域中的成就是巨大的。後來人們問起他成功的秘訣,他以其特有的謙遜方法回答道: 「如果別人思考數學的真理像我一樣深入持久,他也會找到我的發現。」 為了證明自己的結論,有一次他指著《算術研究》第633頁上一個問題動情地說: 「別人都說我是天才,別信它!你看這個問題只佔短短幾行,卻使我整整花了4年時間。4年來我幾乎沒有一個星期不在考慮它的符號問題。」更多的你可以參考這個網址: http://zjyx.sxtge.net/Resource/Book/E/KPTS/joy02010/0003_ts086011.htm
⑻ 數學家主要研究什麼
數學家主要研究那些百年難題,及其解決方法,為化學、物理的科學研究提供基礎。
⑼ 數學家是做什麼的
現代數學家的工作包括,在各級學校教授數學課程,指導研究生,在具體的領域進行研究,發表論文和報告。數學研究工作,不僅是了解及整理已知的結果,還包含著創造新的數學成果與理論。
數學家專注於數、數據、集合、結構、空間、變化,專注於解決純數學領域以外的問題的數學家稱為應用數學家,他們運用他們的特殊知識與專業的方法解決許多在科學領域的顯著問題。因為專注於廣泛領域的問題、理論系統、定點結構,應用數學家經常研究與制定數學模型。
數學成果
中國近現代數學家的一些重要的貢獻:
李善蘭在級數求和方面的研究成果,被命名為「李善蘭恆等式」。
華羅庚關於完整三角和的研究成果被稱為「華氏定理」;另外他與王元提出多重積分近似計算的方法被成為「華—王方法」。
蘇步青在仿射微分幾何學方面的研究成果被命名為「蘇氏錐面」。
陳景潤在哥德巴赫猜想研究中提出的命題被稱為「陳氏定理」。
楊樂和張廣厚在函數論方面的研究成果被稱為「楊—張定理」。
夏道行在泛函積分和不變測度論方面的研究成果被稱為「夏氏不等式」。
熊慶來關於整函數與無窮級的亞純函數的研究成果被稱為「熊氏無窮級」。
陳省身關於示性類的研究成果被稱為「陳示性類」。
周煒良在代數幾何學方面的研究成果被稱為「周氏坐標;另外還有以他命名的「周氏定理」和「周氏環」。