A. 數學建模參考書推薦,數學系英文教材推薦
關於數學建模的話,一本比較經典的國內教材是姜啟源出的那本《數學模型》,對於初學者可能有一定難度,不過確實比較經典,所以推薦。另外推薦的一本是國外的數學建模的教材,是機械工業出版社出的那本,已經是第四版了,這本書我看的雖然不是很多,不過身邊的其他搞數模的同學認為比較好,所以推薦了。另外搞數模的話,一本matlab的相關書籍必不可少,基本數模的程序都由matlab完成了。
關於數學系的英文教材,我們的數學課基本都是雙語教學,但是我個人不是數學系的,所以怕推薦的不是很正確,不過一般來說國外的教材都比較經典,個人比較過國內外的數學教材,覺得相比來說,國外的教材思路更加清晰,而國內的教材可能更適合考試,如果你希望對數學推導方面有較大了解,建議看國外教材,不過如果是僅僅參加各種考試,國內的教材很夠用了。
B. 國外文獻去哪裡搜
下面分享幾個常用的學術網站,可以登陸搜索國內外文獻——
1. sci-hub
萬方資料庫是由萬方數據公司開發的,涵蓋期刊、會議紀要、論文、學術成果、學術會議論文的大型網路資料庫;也是和中國知網齊名的中國專業的學術資料庫。整合數億條全球優質學術資源,集成期刊、學位、會議、科技報告、專利、視頻等十餘種資源類型,覆蓋各研究層次,感知用戶學術背景,智慧搜索。致力於幫助用戶精準發現、獲取與沉澱學術精華。
C. 有沒有大神知道哪個網站可以搜到一些國外的有關數學方
一、研究背景:數學是研究客觀世界的空間形式與數量關系的科學,數是形的抽象概括,形是數的直觀表現.華羅庚先生指出,數缺形時少直觀,形少數時難入微.數形結合既是一個重要的數學思想,又是一種常用的數學方法.數形結合在數學解題中有重要的指導意義,這種「數」與「形」的信息轉換,相互滲透,即數量問題和圖象性質是可以相互轉化的,這不僅可以使一些題目的解決簡捷明快,同時還可以大大開拓我們的解題思路,為研究和探求數學問題開辟了一條重要的途徑.長期以來,在教學中數學知識是一條明線,得到數學教師的重視;數學思想方法是一條暗線,容易被教師所忽視.在我們的小學數學教學中,如果教師能有意識地運用數形結合思想來設計教學,那將非常有利於學生從不同的側面加深對問題的認識和理解,提供解決問題的方法,也有利於培養學生將實際問題轉化為數學問題的能力.「數形結合」對教師來說是一種教學方法、教學策略,對學生來說是一種學習方法,如果長期滲透,運用恰當,則使學生形成良好的數學意識和思想,長期穩固地作用於學生的數學學習生涯中.作為一線教師,如何系統的運用數形結合思想進行數學教學,是我們面臨的一個極富實踐價值的重要課題.二、研究價值:1、通過組織、實施本課題的研究,提高教師對數形結合思想的理解,加深對教材中數形結合思想的分析能力.能在平時的教學中,時刻注意滲透數形結合思想,提升教師自身的專業素養.2、通過組織、實施本課題的研究,提升學生的思維水平,提高學生應用數形結合思想解決實際問題的能力,以適應未來社會發展的需要.三、研究目標: 1、教師有意識地運用數形結合思想進行教學設計,化抽象為形象,創造性地開發課程資源,有效地提高課堂教學質量. 2、研究「數形結合」在小學數學四至六年級領域中的應用,分階段、有層次的滲透數形結合思想. 3、通過「數形結合」有效地提高學生學習數學的興趣,使數形結合成為學生重要的學習方法,能運用數形結合創造性地解決抽象的數學問題.在不斷地「探索」與「創造」中構建屬於個人的數學思想.四、概念界定:1、數形結合:「數」和「形」是數學中兩個最基本的概念,「數」,屬於數學抽象思維范疇,是人的左腦思維的產物;而「形」主要指幾何圖形,屬於形象思維范疇,是人的右腦思維的產物.它們既是對立的,又是統一的,每一個幾何圖形中都蘊含著與它們的形狀、大小、位置密切相關的數量關系;反之,數量關系又常常可以通過幾何圖形做出直觀地反映和描述.數形結合的實質就是將抽象的數學語言與直觀的圖形結合起來,使抽象思維和形象思維結合起來,化難為易,化抽象為直觀.使人充分運用左、右腦的思維功能,相互依存、彼此激發,全面、協調、深入發展人的思維能力.2、數形結合思想:所謂數形結合思想,其實質是將抽象的數學語言與直觀的圖像結合起來,就是根據數與形之間的對應關系,通過數與形的相互轉化來解決數學問題的思想,是一種可使復雜問題簡單化、抽象問題具體化的常用的數學思想方法.主要有以下幾種解題思路:(1)以「數」變「形」;(2)以「形」變「數」;(3)「形」「數」互變.3.「滲透」指某種思想方法在某個實踐過程中逐漸的滲入利用,這里主要指在小學數學課堂教學中逐步滲透數形結合思想方法.五、研究內容:1、數形結合思想在「數與代數」知識領域中的應用.2、數形結合思想在「空間與圖形」知識領域中的應用.3、數形結合思想在「統計與概率」知識領域中的應用.4、數形結合思想在「實踐與綜合運用」知識領域中的應用.六、研究思路:1、學習查找相關理論資料;2、開始分年級教師進行具體研究;3、在具體的實踐中進一步完善研究內容和研究措施;4、最後對研究效果進行提升,形成課題成果報告.七、研究方法:1.調查法:調查當前小學數學教師對數形結合思想在教學中滲透的認識,調查當前學生對數形結合思想來解題的認識狀態.2、文獻研究法:收集、學習、整理有關滲透數學思想方法以及數形結合思想的相關文獻資料並加以分析,以供實驗研究.3、案例研究法:選擇不同領域的教學內容(數與代數、空間與圖形、統計與概率、實踐與綜合運用)中的素材,作為案例進行分析研究,尋求在不同數學學習領域中有效滲透數形結合思想的途徑與模式.4、經驗總結法:把實驗過程中積累的經驗加以總結、歸納並在實驗過程中加以論證.
D. 哪裡可以看到外國的教科書
到新華書店找