導航:首頁 > 數字科學 > 數學積分怎麼來的

數學積分怎麼來的

發布時間:2022-11-14 19:36:54

『壹』 定積分怎麼來的

定積分是積分的一種,是函數f(x)在區間[a,b]上的積分和的極限。這里應注意定積分與不定積分之間的關系:若定積分存在,則它是一個具體的數值(曲邊梯形的面積),而不定積分是一個函數表達式,它們僅僅在數學上有一個計算關系(牛頓-萊布尼茨公式),其它一點關系都沒有!一個函數,可以存在不定積分,而不存在定積分,也可以存在定積分,而不存在不定積分。一個連續函數,一定存在定積分和不定積分;若只有有限個間斷點,則定積分存在;若有跳躍間斷點,則原函數一定不存在,即不定積分一定不存在。

『貳』 積分怎麼算

計算定積分常用的方法:

拓展資料:

定積分的數學定義:如果函數f(x)在區間[a,b]上連續,用分點xi將區間[a,b]分為n個小區間,在每個小區間[xi-1,xi]上任取一點ri(i=1,2,3„,n),作和式f(r1)+...+f(rn),當n趨於無窮大時,上述和式無限趨近於某個常數A,這個常數叫做y=f(x)在區間上的定積計做/abf(x)dx即/abf(x)dx=limn>00[f(r1)+...+f(rn)],這里,a與b叫做積分下限與積分上限,區間[a,b]叫做積分區間,函數f(x)叫做被積函數,x叫做積分變數,f(x)dx叫做被積式。

幾何定義:可以理解為在Oxy坐標平面上,由曲線y=f(x)與直線x=a,x=b以及x軸圍成的曲邊梯形的面積值。(一種確定的實數值)

『叄』 什麼叫做積分(數學)

積分是微分的逆運算,即知道了函數的導函數,反求原函數。在應用上,積分作用不僅如此,它被大量應用於求和,通俗的說是求曲邊三角形的面積,這巧妙的求解方法是積分特殊的性質決定的。

一個函數的不定積分(亦稱原函數)指另一族函數,這一族函數的導函數恰為前一函數。

其中:[F(x) + C]' = f(x)

一個實變函數在區間[a,b]上的定積分,是一個實數。它等於該函數的一個原函數在b的值減去在a的值。

積分 integral 從不同的問題抽象出來的兩個數學概念。定積分和不定積分的統稱。不定積分是為解決求導和微分的逆運算而提出的。例如:已知定義在區間I上的函數f(x),求一條曲線y=F(x),x∈I,使得它在每一點的切線斜率為F′(x)= f(x)。函數f(x)的不定積分是f(x)的全體原函數(見原函數),記作 。如果F(x)是f(x)的一個原函數,則 ,其中C為任意常數。例如, 定積分是以平面圖形的面積問題引出的。y=f(x)為定義在[a,b〕上的函數,為求由x=a,x=b ,y=0和y=f(x)所圍圖形的面積S,採用古希臘人的窮竭法,先在小范圍內以直代曲,求出S的近似值,再取極限得到所求面積S,為此,先將[a,b〕分成n等分:a=x0<x1<…<xn=b,取ζi∈[xi-1,xi〕,記Δxi=xi-xi-1,,則pn為S的近似值,當n→+∞時,pn的極限應可作為面積S。把這一類問題的思想方法抽象出來,便得定積分的概念:對於定義在[a,b〕上的函數y=f(x),作分劃a=x0<x1<…<xn=b,若存在一個與分劃及ζi∈[xi-1,xi〕的取法都無關的常數I,使得,其中則稱I為f(x)在[a,b〕上的定積分,表為即 稱[a,b〕為積分區間,f(x)為被積函數,a,b分別稱為積分的上限和下限。當f(x)的原函數存在時,定積分的計算可轉化為求f(x)的不定積分:這是c牛頓萊布尼茲公式。

以上講的是傳統意義上的積分也即黎曼積分。

『肆』 什麼是積分(數學中的積分)

下面不用任何專業術語,只用日常生活的比喻來大概說明一下微積分的原理。

一、微分的思想:

從上海到拉薩的平均坡度是多少?(高度比上距離)
從成都到拉薩的平均坡度是多少?
從古玉到拉薩的平均坡度是多少?
從墨脫到拉薩的平均坡度是多少?
從大丁卡到拉薩的平均坡度是多少?
...............................
距離越來短,從大范圍的平均坡度,到小范圍內平均坡度,到很小很小距離內的平均坡度,.........,一直這樣無止境的下去,最後得到一個點的坡度值。

你的頭發,在過去的十年中,平均每秒長多長?
在過去的一年中,平均每秒長多長毫米?
在過去的半年中,平均每秒長多長毫米?
在過去的一個月中,平均每秒長多長毫米?
在過去的一星期中,平均每秒長多長毫米?
在過去的12小時中,平均每秒長多長毫米?
在過去的10分鍾內,平均每秒長多長毫米?
在過去的10秒內, 平均每秒長多長毫米?
在過去的0.1秒內, 平均生長速度(仍然按米每秒錶示)?
在過去的0.001秒內, 平均生長速度(仍然按米每秒錶示)?
在過去的0.00001秒內, 平均生長速度(仍然按米每秒錶示)?
在過去的0.0000001秒內, 平均生長速度(仍然按米每秒錶示)?
..........................................................
這樣從平均增長速度算到了瞬時增長速度。

以上兩例就是微分。

二、積分的思想:

在一張繪圖紙上,畫一個圓(半徑10cm),繪圖紙的小方格是1cm×1cm,估算圓的面積;
繪圖紙的小方格是0.1cm×0.1cmm,估算圓的面積;
繪圖紙的小方格是0.001cm×0.001cm,估算圓的面積;
繪圖紙的小方格是0.00001cm×0.00001cm,估算圓的面積;
繪圖紙的小方格是0.0000001cm×0.0000001cm,估算圓的面積;
繪圖紙的小方格是0.000000001cm×0.000000001cm,估算圓的面積;
繪圖紙的小方格是0.00000000001cm×0.0000000001cm,估算圓的面積;
..................................................................

這樣的估計越來越准確。

將一條曲線分成10段,將每每一段的直線距離加起來;
將該曲線分成100段,將每每一段的直線距離加起來;
將該曲線分成10000段,將每每一段的直線距離加起來;
將該曲線分成1000000段,將每每一段的直線距離加起來;
將該曲線分成100000000段,將每每一段的直線距離加起來;
將該曲線分成10000000000段,將每每一段的直線距離加起來;
將該曲線分成1000000000000段,將每每一段的直線距離加起來;
將該曲線分成100000000000000段,將每每一段的直線距離加起來;
將該曲線分成10000000000000000段,將每每一段的直線距離加起來;
............................................................
這樣算出的長度當成曲線的長度越來越准確。

以上兩例就是積分思想。

微積分 = 微分 + 積分

大概明白一點了嗎?有問題歡迎來討論。

『伍』 什麼是數學積分

積分是微積分學與數學分析里的一個核心概念。通常分為定積分和不定積分兩種。

不定積分,是單純的積分,也就是已知導數求原函數,而若F(x)的導數是f(x),那麼F(x)+C(C是常數)的導數也是f(x),也就是說,把f(x)積分,不一定能得到F(x),因為F(x)+C的導數也是f(x),C是任意的常數,所以f(x)積分的結果有無數個,是不確定的,我們一律用F(x)+C代替,這就稱為不定積分。

用公式表示是:。之所以稱其為定積分,是因為它積分後得出的值是確定的,是一個數,而不是一個函數。

常用的積分公式有

f(x)->∫f(x)dx

k->kx

x^n->[1/(n+1)]x^(n+1)

a^x->a^x/lna

sinx->-cosx

cosx->sinx

tanx->-lncosx

cotx->lnsinx

secx->ln(secx+tanx)

cscx->ln(cscx-cotx)

(ax+b)^n->[(ax+b)^(n+1)]/[a(n+1)]

1/(ax+b)->1/a*ln(ax+b)

『陸』 積分是怎樣產生的

微積分基本定理,由艾薩克·牛頓和戈特弗里德·威廉·萊布尼茨在十七世紀分別獨自確立。微積分基本定理將微分和積分聯系在一起,這樣,通過找出一個函數的原函數,就可以方便地計算它在一個區間上的積分。積分和導數已成為高等數學中最基本的工具,並在自然科學和工程學中得到廣泛運用。

『柒』 誰能夠告訴我微積分是怎樣發明出來的

這個可以寫一本書的。
大概說下:微分最開始是在實際應用中計算極值時發現的,費馬、牛頓、萊布尼茲都做出了貢獻。牛頓創立了流數法和反流數法,相當於現在的微分和積分。萊布尼茲在微積分數學符號發明方面做出了貢獻。那時理論並沒有這么完善,牛頓流數法求微分過程是這樣的
設f(x)=x^2,給自變數一個增量a
[f(x+a)-f(x)]/a=[(x+a)^2-x^2]/a=2x+a
(1)
牛頓簡單令a=0得到微分f'(x)=2x
注意到(1)中a做分母不為0,但是接著又直接令a=0,這種a即為0又不為0的矛盾,令後世爭論不休。那時還沒有極限的概念,因此微分定義不嚴格。這些是後來數學家柯西等做了大量的嚴格化的工作。
積分最開始是用於計算曲線面積的。我們現在用的積分符號就是萊布尼茲發明的。牛頓和萊布尼茲發現了微積分基本定理,具有重大意義。

『捌』 微積分是怎麼來的

微積分
微積分 英文名:Calculus
微積分是研究函數的微分、積分以及有關概念和應用的數學分支。微積分是建立在實數、函數和極限的基礎上的。

極限和微積分的概念可以追溯到古代。到了十七世紀後半葉,牛頓和萊布尼茨完成了許多數學家都參加過准備的工作,分別獨立地建立了微積分學。他們建立微積分的出發點是直觀的無窮小量,理論基礎是不牢固的。直到十九世紀,柯西和維爾斯特拉斯建立了極限理論,康托爾等建立了嚴格的實數理論,這門學科才得以嚴密化。

微積分是與實際應用聯系著發展起來的,它在天文學、力學、化學、生物學、工程學、經濟學等自然科學、社會科學及應用科學個分支中,有越來越廣泛的應用。特別是計算機的發明更有助於這些應用的不斷發展。

微積分學是微分學和積分學的總稱。

客觀世界的一切事物,小至粒子,大至宇宙,始終都在運動和變化著。因此在數學中引入了變數的概念後,就有可能把運動現象用數學來加以描述了。

由於函數概念的產生和運用的加深,也由於科學技術發展的需要,一門新的數學分支就繼解析幾何之後產生了,這就是微積分學。微積分學這門學科在數學發展中的地位是十分重要的,可以說它是繼歐氏幾何後,全部數學中的最大的一個創造。

微積分學的建立

從微積分成為一門學科來說,是在十七世紀,但是,微分和積分的思想在古代就已經產生了。

公元前三世紀,古希臘的阿基米德在研究解決拋物弓形的面積、球和球冠面積、螺線下面積和旋轉雙曲體的體積的問題中,就隱含著近代積分學的思想。作為微分學基礎的極限理論來說,早在古代以有比較清楚的論述。比如我國的莊周所著的《莊子》一書的「天下篇」中,記有「一尺之棰,日取其半,萬世不竭」。三國時期的劉徽在他的割圓術中提到「割之彌細,所失彌小,割之又割,以至於不可割,則與圓周和體而無所失矣。」這些都是樸素的、也是很典型的極限概念。

到了十七世紀,有許多科學問題需要解決,這些問題也就成了促使微積分產生的因素。歸結起來,大約有四種主要類型的問題:第一類是研究運動的時候直接出現的,也就是求即時速度的問題。第二類問題是求曲線的切線的問題。第三類問題是求函數的最大值和最小值問題。第四類問題是求曲線長、曲線圍成的面積、曲面圍成的體積、物體的重心、一個體積相當大的物體作用於另一物體上的引力。

十七世紀的許多著名的數學家、天文學家、物理學家都為解決上述幾類問題作了大量的研究工作,如法國的費爾瑪、笛卡爾、羅伯瓦、笛沙格;英國的巴羅、瓦里士;德國的開普勒;義大利的卡瓦列利等人都提出許多很有建樹的理論。為微積分的創立做出了貢獻。

十七世紀下半葉,在前人工作的基礎上,英國大科學家ㄈ牛頓和德國數學家萊布尼茨分別在自己的國度里獨自研究和完成了微積分的創立工作,雖然這只是十分初步的工作。他們的最大功績是把兩個貌似毫不相關的問題聯系在一起,一個是切線問題(微分學的中心問題),一個是求積問題(積分學的中心問題)。

牛頓和萊布尼茨建立微積分的出發點是直觀的無窮小量,因此這門學科早期也稱為無窮小分析,這正是現在數學中分析學這一大分支名稱的來源。牛頓研究微積分著重於從運動學來考慮,萊布尼茨卻是側重於幾何學來考慮的。

牛頓在1671年寫了《流數法和無窮級數》,這本書直到1736年才出版,它在這本書里指出,變數是由點、線、面的連續運動產生的,否定了以前自己認為的變數是無窮小元素的靜止集合。他把連續變數叫做流動量,把這些流動量的導數叫做流數。牛頓在流數術中所提出的中心問題是:已知連續運動的路徑,求給定時刻的速度(微分法);已知運動的速度求給定時間內經過的路程(積分法)。

德國的萊布尼茨是一個博才多學的學者,1684年,他發表了現在世界上認為是最早的微積分文獻,這篇文章有一個很長而且很古怪的名字《一種求極大極小和切線的新方法,它也適用於分式和無理量,以及這種新方法的奇妙類型的計算》。就是這樣一片說理也頗含糊的文章,卻有劃時代的意義。他以含有現代的微分符號和基本微分法則。1686年,萊布尼茨發表了第一篇積分學的文獻。他是歷史上最偉大的符號學者之一,他所創設的微積分符號,遠遠優於牛頓的符號,這對微積分的發展有極大的影響。現在我們使用的微積分通用符號就是當時萊布尼茨精心選用的。

微積分學的創立,極大地推動了數學的發展,過去很多初等數學束手無策的問題,運用微積分,往往迎刃而解,顯示出微積分學的非凡威力。

前面已經提到,一門科學的創立決不是某一個人的業績,他必定是經過多少人的努力後,在積累了大量成果的基礎上,最後由某個人或幾個人總結完成的。微積分也是這樣。

不幸的事,由於人們在欣賞微積分的宏偉功效之餘,在提出誰是這門學科的創立者的時候,竟然引起了一場悍然大波,造成了歐洲大陸的數學家和英國數學家的長期對立。英國數學在一個時期里閉關鎖國,囿於民族偏見,過於拘泥在牛頓的「流數術」中停步不前,因而數學發展整整落後了一百年。

其實,牛頓和萊布尼茨分別是自己獨立研究,在大體上相近的時間里先後完成的。比較特殊的是牛頓創立微積分要比萊布尼詞早10年左右,但是整是公開發表微積分這一理論,萊布尼茨卻要比牛頓發表早三年。他們的研究各有長處,也都各有短處。那時候,由於民族偏見,關於發明優先權的爭論竟從1699年始延續了一百多年。

應該指出,這是和歷史上任何一項重大理論的完成都要經歷一段時間一樣,牛頓和萊布尼茨的工作也都是很不完善的。他們在無窮和無窮小量這個問題上,其說不一,十分含糊。牛頓的無窮小量,有時候是零,有時候不是零而是有限的小量;萊布尼茨的也不能自圓其說。這些基礎方面的缺陷,最終導致了第二次數學危機的產生。

直到19世紀初,法國科學學院的科學家以柯西為首,對微積分的理論進行了認真研究,建立了極限理論,後來又經過德國數學家維爾斯特拉斯進一步的嚴格化,使極限理論成為了微積分的堅定基礎。才使微積分進一步的發展開來。

任何新興的、具有無量前途的科學成就都吸引著廣大的科學工作者。在微積分的歷史上也閃爍著這樣的一些明星:瑞士的雅科布·貝努利和他的兄弟約翰·貝努利、歐拉、法國的拉格朗日、科西……

歐氏幾何也好,上古和中世紀的代數學也好,都是一種常量數學,微積分才是真正的變數數學,是數學中的大革命。微積分是高等數學的主要分支,不只是局限在解決力學中的變速問題,它馳騁在近代和現代科學技術園地里,建立了數不清的豐功偉績。

微積分的基本內容

研究函數,從量的方面研究事物運動變化是微積分的基本方法。這種方法叫做數學分析。

本來從廣義上說,數學分析包括微積分、函數論等許多分支學科,但是現在一般已習慣於把數學分析和微積分等同起來,數學分析成了微積分的同義詞,一提數學分析就知道是指微積分。微積分的基本概念和內容包括微分學和積分學。

微分學的主要內容包括:極限理論、導數、微分等。

積分學的主要內容包括:定積分、不定積分等。

微積分是與應用聯系著發展起來的,最初牛頓應用微積分學及微分方程為了從萬有引力定律導出了開普勒行星運動三定律。此後,微積分學極大的推動了數學的發展,同時也極大的推動了天文學、力學、物理學、化學、生物學、工程學、經濟學等自然科學、社會科學及應用科學各個分支中的發展。並在這些學科中有越來越廣泛的應用,特別是計算機的出現更有助於這些應用的不斷發展。

『玖』 積分是怎麼形成的

分為消費積分和獎勵積分。消費一元積一分。了解更多服務優惠點擊下方的「官方網址」客服217為你解答。

閱讀全文

與數學積分怎麼來的相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:740
乙酸乙酯化學式怎麼算 瀏覽:1406
沈陽初中的數學是什麼版本的 瀏覽:1353
華為手機家人共享如何查看地理位置 瀏覽:1045
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:886
數學c什麼意思是什麼意思是什麼 瀏覽:1411
中考初中地理如何補 瀏覽:1300
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:703
數學奧數卡怎麼辦 瀏覽:1388
如何回答地理是什麼 瀏覽:1025
win7如何刪除電腦文件瀏覽歷史 瀏覽:1058
大學物理實驗干什麼用的到 瀏覽:1487
二年級上冊數學框框怎麼填 瀏覽:1701
西安瑞禧生物科技有限公司怎麼樣 瀏覽:974
武大的分析化學怎麼樣 瀏覽:1250
ige電化學發光偏高怎麼辦 瀏覽:1339
學而思初中英語和語文怎麼樣 瀏覽:1651
下列哪個水飛薊素化學結構 瀏覽:1425
化學理學哪些專業好 瀏覽:1488
數學中的棱的意思是什麼 瀏覽:1059