『壹』 二年級數學數量關系是什麼
二年級的數學數量的關系呢,這個其實非常簡單,其實數量關系就只有三種情況,一種是大於一種是小於,另外一種呢叫做等於這個就是數量之間的關系了。當然了,也可以把大於和小於都叫做不等於。
『貳』 數學中有哪些等量關系
等量關系
行程問題
基本關系:
速度×時間=路程 (一)相遇問題相遇問題的基本題型及等量關系
1.同時出發(兩段) 甲的路程+乙的路程=總路程
2.不同時出發(三段 ) 先走的路程+甲的路程+乙的路程=總路程
(一)追及問題
追及問題的基本題型及等量關系
1.不同地點同時出發 快者行駛的路程-慢者行駛的路程=相距的路程
2.同地點不同時出發 快者行駛的路程=慢者行駛的路程慢者所用時間=快者所用時間+多用時間
(二)飛行、航行的速度問題 等量關系:
順水速度=船速+水速
(順風飛行速度=飛機本身速度+風速)
逆水速度=船速-水速
(逆風飛行速度=飛機本身速度-風速)
順水(順風)的路程=逆水(逆風)的路程
二.工程問題
等量關系:(圖示法)工作總量=工作效率×工作時間
全部工作量之和=各隊工作量之和,各隊合作工作效率=各隊工作效率之和
工作總量不清楚時看成「1」
等積變形問題
基本數量關系是相關的面積(體積)公式,相等關系的特徵是存在不變數,也就是用不同的方法來計算同一個量
四.利率問題
等量關系:
利息-利息稅=應得利息 利息=本金×利率×期數
利息稅=本金×利率×期數×稅率
本息和=本金+本金×年利率×年數.
六.打折問題
等量關系:利潤=售價-進價 利潤率=利潤/進價售價=進價×(1+利潤率)
七.百分比問題
增長率問題 等量關系:
增長後的量=增長前的量×(1+增長率)
『叄』 中班數學數與量的關系概念
數和量的關系屬於名稱與實物的關系。數與量的對應是中班幼兒數學學習的內容,通過直觀的教具和操作方法能讓幼兒在真實情境中培育對數學的愛好並漸漸形成數學概念,數和量的關系屬於名稱與實物的關系,主觀與客觀的無法用意志隨意改變的。數和量的關系屬於名稱與實物的關系,主觀與客觀的關系。
『肆』 數學中的數量關系是什麼意思 數學中的數量關系具體是什麼意思
1、數量關系是數字與數字之間、數字與未知數之間、未知數與未知數之間的等量、大小之間的光系。數量關系在解決數學問題時廣泛應用,對於數學問題的解決是必不可少的。
2、數量關系是公務員考試行政職業能力測驗科目中的一種考試題型。常見的題型有:數字推理、數學運算等。
『伍』 數與量的關系
沒關系,數是數字,一二三百千萬,量是量詞,頭,只,群等等。但二者不能分開用,否則就沒有任何意義。
『陸』 數學中,量是個什麼東西
量是一種單位,包括長度單位、質量單位、時間單位、體積單位等等。
長度單位、km m dm cm mm μm
質量單位、t kg g
時間單位、年 月 日 時 分 秒 毫秒 微秒
體積單位、km³ m³ dm³ cm³ mm³ L mL
『柒』 數學中什麼叫數量關系
數量關系就是兩個或兩個以上的數(或表達式)之間的關系。比如大小、倍數、互為相反數等。數量關系式是量與量之間的關系用式子表達。,比如說a是b的兩倍,寫成數量關系式是a=2b。
1.1倍數×倍數=幾倍數,幾倍數÷1倍數=倍數,幾倍數÷倍數=1倍數。
2.速度×時間=路程,路程÷速度=時間,路程÷時間=速度。
3.加數+加數=和,和-一個加數=另一個加數。
4.被減數-減數=差,被減數-差=減數,差+減數=被減數。
5.因數×因數=積,積÷一個因數=另一個因數。
6.被除數÷除數=商,被除數÷商=除數,商×除數=被除數。
等量關系特指數量間的相等關系,是數量關系中的一種。數學題目中常含有多種等量關系,如果要求用方程解答時,就需找出題中的對等關系。
『捌』 小學數學兩種量之間的幾種關系
1.和差關系
a比b少2 。a+2=b,……
2.倍數關系。
a是b的2倍。2b=a,……
3.「比」的關系。
a和b的比值是2。a:b=2(a➗b=2)……
4.分數關系(百分數關系)
a是b的1/2。b✖️1/2=a,……
a比b多1/2;b✖️1/2=多的,b✖️(1+1/2)=a,……
『玖』 數學中如何描述量間的關系
准確地說,數學中如何描述數量間的關系?
答:主要有兩類描述方法。
一是式子表達,包括等式(函數關系式、方程、方程組等)和不等式。
二是圖形表達,像函數的圖像、方程的曲線等。
『拾』 什麼是數,什麼是量,它們之間有什麼關系
在數學上也沒有看到過相關的定義,只是見到一些簡單的說明,說數的起源來自於數數,倒是在詞典上看到了對數作的比較明確的解釋:「表示事物的量的基本數學概念」、「數是一種抽象的概念,用作表達數量」、「表示、劃分或計算出來的量」。幾種解釋盡管在用詞上有些差別但本質還都是一樣的,那就是數是用來表示量的。至於什麼是量,不管是哲學還是詞典上的解釋都有些勉強,比如 ,「量是事物存在和發展的規模、程度、速度以及它的構成成分在空間上的排列組合等等可以用數量表示的規定性。」
http://blog.sina.com.cn/s/blog_01482fb60100fv99.html?retcode=0