① 七年級下冊數學有哪些單元
北師大 1整式的運算 2平行線與相交線 3生活中的數據 4概率 5三角形 6變數之間的關系 7生活中的軸對稱
② 七年級下數學有哪些章節
如果書是人教版的 那麼目錄如下:
第五章相交線與平行線
5.1相交線
觀察與猜想看圖時的錯覺
5.2平行線及其判定
5.3平行線的性質
信息技術應用探索兩條直線的位置關系
5.4平移
數學活動
小結
復習題5
第六章實數
6.1平方根
6.2立方根
6.3 實數
閱讀與思考為什麼√2不是有理數
數字活動
小結
復習題6
第七章平面直角坐標系
7.1平面直角坐標系
閱讀與思考用經緯度表示地理位置
7.2坐標方法的簡單應用
數學活動
小結
復習題7
第八章二元一次方程組
8.1二元一次方程組
8.2消元——解二元一次方程組
8.3實際問題與二元一次方程組
8.4三元一次方程組的解法
閱讀與思考一次方程組的古今表示及解法
數學活動
小結
復習題8
第九章不等式與不等式組
9.1不等式
閱讀與思考用求差法比較大小
9.2一元一次不等式
9.3一元一次不等式組
數學活動
小結
復習題9
第十章數據的收集、整理與描述
10.1統計調查
實驗與探究瓶子中有多少粒豆子
10.2直方圖
信息技術應用利用計算機畫統計圖
10.3課題學習 從數據談節水
數學活動
小結
復習題10
③ 人教版七年級下數學都有哪些單元
第一章:相交線與平行線
第二章:平面直角坐標系
第三章:三角形
第四章:二元一次方程
第五章:不等式與不等式組
第六章:數據的收集、整理與描述
④ 初中數學書有幾本,分幾冊,共幾章,每一章的名稱是什麼
初中數學書有6本,七年級上下兩冊,八年級上下兩冊,九年級上下兩冊。
七年級上下兩冊
有理數、整式的加減、一元一次方程、圖形認識初步、相交線與平行線、平面直角坐標系、三角形、二元一次方程、不等式與不等式組、數據的收集、整理與描述。
八年級上下兩冊
三角形的高、中線和角平分線是三角形中的主要線段,與三角形有關的角有內角、外角。
教材通過實驗讓學生了解三角形的穩定性,在知道三角形的內角和等於180°的基礎上,進行推理論證,從而得出三角形外角的性質。接著由推廣三角形的有關概念,介紹了多邊形的有關概念,利用三角形的有關性質研究了多邊形的內角和、外角和公式。
九年級上下兩冊
學習內容:二次根式、一元二次方程、圓、二次函數、旋轉、概率,解直角三角形。
(4)數學七下有哪些章節擴展閱讀:
學生應掌握的基本技能
(1)能夠運用有關相交線、平行線、三角形、四邊形、相似形和圓的一些概念和性質進行論證與計算。
(2)能夠使用直尺、圓規、刻度尺、三角板、量角器等工具畫出圖形,並能使用直尺和圓規作常用的基本圖形,以及能解最簡單的幾何作圖題。
思維能力主要是指:會觀察、實驗、比較、猜想、分析、綜合、抽象和概括;會用歸納、演繹和類比進行推理;會合乎邏輯地、准確地闡述自己的思想和觀點;會運用數學概念、原理、思想和方法辨明數學關系。形成良好的思想品質,提高思維水平。
運算能力是指:會根據法則、公式等正確地進行運算,並理解運算的算理;能夠根據問題的條件尋求與設計合理、簡潔的運算途徑。
空間觀念主要是指:能夠由形狀簡單的實物想像出幾何圖形,由幾何圖形想像出實物的形狀;能夠由較復雜的平面圖形分解出簡單的、基本的圖形;能夠在基本的圖形中找出基本元素及其關系;能夠根據條件作出或畫出圖形。
參考資料來源:網路-中學數學 (學科)
⑤ 初中數學七年級下冊人教版教材中有哪些是代數章節
實數、不等式與不等式組、平面直角坐標系、二元一次方程組
⑥ 急!急!急!人教版的七年級下冊數學課本有幾章都有什麼內容
六章
相交線與平行線
平面直角坐標系
三角形
二元一次方程組
不等式與不等式組
數據的收集、整理與描述
我看著書寫的,不會有錯,2009年初一的,人教版
⑦ 人教版七年級下冊數學第七章知識點總結,具體點,謝
版本可能變了,不過你自己找找看吧
七年級下學期數學知識梳理
第五章 相交線與平行線
一、知識結構圖
相交線
相交線 垂線
同位角、內錯角、同旁內角
平行線
平行線及其判定
平行線的判定
平行線的性質
平行線的性質
命題、定理
平移
二、知識定義
鄰補角:兩條直線相交所構成的四個角中,有公共頂點且有一條公共邊的兩個角是鄰補角.
對頂角:一個角的兩邊分別是另一個叫的兩邊的反向延長線,像這樣的兩個角互為對頂角.
垂線:兩條直線相交成直角時,叫做互相垂直,其中一條叫做另一條的垂線.
平行線:在同一平面內,不相交的兩條直線叫做平行線.
同位角、內錯角、同旁內角:
同位角:∠1與∠5像這樣具有相同位置關系的一對角叫做同位角.
內錯角:∠2與∠6像這樣的一對角叫做內錯角.
同旁內角:∠2與∠5像這樣的一對角叫做同旁內角.
命題:判斷一件事情的語句叫命題.
平移:在平面內,將一個圖形沿某個方向移動一定的距離,圖形的這種移動叫做平移平移變換,簡稱平移.
對應點:平移後得到的新圖形中每一點,都是由原圖形中的某一點移動後得到的,這樣的兩個點叫做對應點.
三、定理與性質
對頂角的性質:對頂角相等.
垂線的性質:
性質1:過一點有且只有一條直線與已知直線垂直.
性質2:連接直線外一點與直線上各點的所有線段中,垂線段最短.
平行公理:經過直線外一點有且只有一條直線與已知直線平行.
平行公理的推論:如果兩條直線都與第三條直線平行,那麼這兩條直線也互相平行.
平行線的性質:
性質1:兩直線平行,同位角相等.
性質2:兩直線平行,內錯角相等.
性質3:兩直線平行,同旁內角互補.
平行線的判定:
判定1:同位角相等,兩直線平行.
判定2:內錯角相等,兩直線平行.
判定3:同旁內角相等,兩直線平行.
四、經典例題
例1 如圖,直線AB,CD,EF相交於點O,∠AOE=54°,∠EOD=90°,求∠EOB,∠COB的度數.
例2 如圖AD平分∠CAE,∠B = 350,∠DAE=600,那麼∠ACB等於多少?
例3 三角形的一個外角等於與它相鄰的內角的4倍,等於與它不
相鄰的一個內角的2倍,則這個三角形各角的度數為( ).
A.450、450、900 B.300、600、900
C.250、250、1300 D.360、720、720
例4 已知如圖,求∠A+∠B+∠C+∠D+∠E+∠F的度數.
例5 如圖,AB∥CD,EF分別與AB、CD交於G、H,MN⊥AB於G,∠CHG=1240,則∠EGM等於多少度?
第六章 平面直角坐標系
一、知識結構圖
有序數對
平面直角坐標系
平面直角坐標系
用坐標表示地理位置
坐標方法的簡單應用
用坐標表示平移
二、知識定義
有序數對:有順序的兩個數a與b組成的數對叫做有序數對,記做(a,b)
平面直角坐標系:在平面內,兩條互相垂直且有公共原點的數軸組成平面直角坐標系.
橫軸、縱軸、原點:水平的數軸稱為x軸或橫軸;豎直的數軸稱為y軸或縱軸;兩坐標軸的交點為平面直角坐標系的原點.
坐標:對於平面內任一點P,過P分別向x軸,y軸作垂線,垂足分別在x軸,y軸上,對應的數a,b分別叫點P的橫坐標和縱坐標.
象限:兩條坐標軸把平面分成四個部分,右上部分叫第一象限,按逆時針方向一次叫第二象限、第三象限、第四象限.坐標軸上的點不在任何一個象限內.
三、經典例題
例1 一個機器人從O點出發,向正東方向走3米到達A1點,再向正北方向走6米到達A2點,再向正西方向走9米到達A3點,再向正南方向走12米到達A4點,再向正東方向走15米到達A5點,如果A1求坐標為(3,0),求點 A5的坐標.
例2 如圖是在方格紙上畫出的小旗圖案,若用(0,0)表示A點,(0,4)表示B點,那麼C點的位置可表示為( )
A、(0,3) B、(2,3) C、(3,2) D、(3,0)
例3 如圖2,根據坐標平面內點的位置,寫出以下各點的坐標:
A( ),B( ),C( ).
例4 如圖,面積為300px2的△ABC向x軸正方向平移至△DEF的位置,相應的坐標如圖所示(a,b為常數),
(1)、求點D、E的坐標
(2)、求四邊形ACED的面積.
例5 過兩點A(3,4),B(-2,4)作直線AB,則直線AB( )
A、經過原點 B、平行於y軸
C、平行於x軸 D、以上說法都不對
第七章 三角形
一、知識結構圖
邊
與三角形有關的線段 高
中線
角平分線
三角形的內角和 多邊形的內角和
三角形的外角和 多邊形的外角和
二、知識定義
三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形.
三邊關系:三角形任意兩邊的和大於第三邊,任意兩邊的差小於第三邊.
高:從三角形的一個頂點向它的對邊所在直線作垂線,頂點和垂足間的線段叫做三角形的高.
中線:在三角形中,連接一個頂點和它的對邊中點的線段叫做三角形的中線.
角平分線:三角形的一個內角的平分線與這個角的對邊相交,這個角的頂點和交點之間的線段叫做三角形的角平分線.
三角形的穩定性:三角形的形狀是固定的,三角形的這個性質叫三角形的穩定性.
多邊形:在平面內,由一些線段首尾順次相接組成的圖形叫做多邊形.
多邊形的內角:多邊形相鄰兩邊組成的角叫做它的內角.
多邊形的外角:多邊形的一邊與它的鄰邊的延長線組成的角叫做多邊形的外角.
多邊形的對角線:連接多邊形不相鄰的兩個頂點的線段,叫做多邊形的對角線.
正多邊形:在平面內,各個角都相等,各條邊都相等的多邊形叫做正多邊形.
平面鑲嵌:用一些不重疊擺放的多邊形把平面的一部分完全覆蓋,叫做用多邊形覆蓋平面.
三、公式與性質
三角形的內角和:三角形的內角和為180°
三角形外角的性質:
性質1:三角形的一個外角等於和它不相鄰的兩個內角的和.
性質2:三角形的一個外角大於任何一個和它不相鄰的內角.
多邊形內角和公式:n邊形的內角和等於(n-2)·180°
多邊形的外角和:多邊形的內角和為360°.
多邊形對角線的條數:(1)從n邊形的一個頂點出發可以引(n-3)條對角線,把多邊形分詞(n-2)個三角形.
(2)n邊形共有條對角線.
四、經典例題
例1 如圖,已知△ABC中,AQ=PQ、PR=PS、PR⊥AB於R,PS⊥AC於S,有以下三個結論:①AS=AR;②QP∥AR;③△BRP≌△CSP,其中( ).
(A)全部正確 (B)僅①正確 (C)僅①、②正確 (D)僅①、③正確
例2 如圖,結合圖形作出了如下判斷或推理:
①如圖甲,CD⊥AB,D為垂足,那麼點C到AB的距離等於C、D兩點間的距離;
②如圖乙,如果AB∥CD,那麼∠B=∠D;
③如圖丙,如果∠ACD=∠CAB,那麼AD∥BC;
④如圖丁,如果∠1=∠2,∠D=120°,那麼∠BCD=60°.其中正確的個數是( )個.
(A)1 (B)2 (C)3 (D)4
例3 在如圖所示的方格紙中,畫出,△DEF和△DEG(F、G不能重合),使得△ABC≌△DEF≌DEG.你能說明它們為什麼全等嗎?
例4 測量小玻璃管口徑的量具CDE上,CD=l0mm,DE=80mm.如果小管口徑AB正對著量具上的50mm刻度,那麼小管口徑AB的長是多少?
例5 在直角坐標系中,已知A(-4,0)、B(1,0)、C(0,-2)三點.請按以下要求設計兩種方案:作一條與軸不重合,與△ABC的兩邊相交的直線,使截得的三角形與△ABC相似,並且面積是△AOC面積的.分別在下面的兩個坐標中系畫出設計圖形,並寫出截得的三角形三個頂點的坐標.
第八章 二元一次方程組
一、知識結構圖
設未知數,列方程
解 代入法
方 加減法
程 (消元)
組
檢驗
二、知識定義
二元一次方程:含有兩個未知數,並且未知數的指數都是1,像這樣的方程叫做二元一次方程,一般形式是 ax+by=c(a≠0,b≠0).
二元一次方程組:把兩個二元一次方程合在一起,就組成了一個二元一次方程組.
二元一次方程的一般地,使二元一次方程兩邊的值相等的未知數的值叫做二元一次方程組的解.
二元一次方程組的一般地,二元一次方程組的兩個方程的公共解叫做二元一次方程組.
消元:將未知數的個數由多化少,逐一解決的想法,叫做消元思想.
代入消元:將一個未知數用含有另一個未知數的式子表示出來,再代入另一個方程,實現消元,進而求得這個二元一次方程組的解,這種方法叫做代入消元法,簡稱代入法.
加減消元法:當兩個方程中同一未知數的系數相反或相等時,將兩個方程的兩邊分別相加或相減,就能消去這個未知數,這種方法叫做加減消元法,簡稱加減法.
三、經典例題
例1 用加減消元法解方程組,由①×2—②得.
例2 如果是同類項,則、的值是( )
A、=-3,=2 B、=2,=-3
C、=-2,=3 D、=3,=-2
例3 計算:
例4 王大伯承包了25畝土地,今年春季改種茄子和西紅柿兩種大棚蔬菜,用去了44000元.其中種茄子每畝用了1700元,獲純利2400元;種西紅柿每畝用了1800元,獲純利2600元.問王大伯一共獲純利多少元?
例5 已知關於x、y的二元一次方程組的解滿足二元一次方程,求的值.
第九章 不等式與不等式組
一、知識結構圖
實際問題
(包含不等關系)
數學問題
(一元一次不等式(組))
設未知數,列不等式(組)
解
不
等
式
組
數學問題的解
(不等式(組)的解決)
實際問題的答案
檢驗
二、知識定義
不等式:一般地,用符號「<」「>」「≤ 」「≥」表示大小關系的式子叫做不等式.
不等式的使不等式成立的未知數的值,叫做不等式的解.
不等式的解集:一個含有未知數的不等式的所有解,組成這個不等式的解集.
一元一次不等式:不等式的左、右兩邊都是整式,只有一個未知數,並且未知數的最高次數是1,像這樣的不等式,叫做一元一次不等式.
一元一次不等式組:一般地,關於同一未知數的幾個一元一次不等式合在一起,就組成了一個一元一次不等式組.
一元一次不等式組的解集:一元一次不等式組中各個不等式的解集的公共部分,叫做這個一元一次不等式組的解集.
三、定理與性質
不等式的性質:
不等式的基本性質1:不等式的兩邊都加上(或減去)同一個數(或式子),不等號的方向不變.
不等式的基本性質2:不等式的兩邊都乘以(或除以)同一個正數,不等號的方向不變.
不等式的基本性質3:不等式的兩邊都乘以(或除以)同一個負數,不等號的方向改變
四、經典例題
例1 當x 時,代數代2-3x的值是正數.
例2 一元一次不等式組的解集是 ( )
A.-2<x<3 B.-3<x<2 C.x<-3 D.x<2
例3 已知方程組的解為負數,求k的取值范圍.
例4 某種植物適宜生長在溫度為18℃~20℃的山區,已知山區海拔每升高100米,氣溫下降0.5℃,現在測出山腳下的平均氣溫為22℃,問該植物種在山的哪一部分為宜?(假設山腳海拔為0米)
例5 某園林的門票每張10元,一次使用,考慮到人們的不同需求,也為了吸引更多的遊客,該園林除保留原來的售票方法外,還推出了一種「購買個人年票」的售票方法(個人年票從購買日起,可供持票者使用一年).年票分A、B、C三類:A類年票每張120元,持票者進入園林時,無需再用門票;B類年票每張60元,持票者進入該園林時,需再購買門票,每次2元;C類年票每張40元,持票者進入該園林時,需再購買門票,每次3元.
(1)如果你只選擇一種購買門票的方式,並且你計劃在一年中用80元花在該園林的門票上,試通過計算,找出可進入該園林的次數最多的購票方式.
(2)求一年中進入該園林至少超過多少次時,購買A類年票比較合算.
第十章 數據的收集、整理與描述
一、知識結構圖
製表 繪圖
二、知識定義
全面調查:考察全體對象的調查方式叫做全面調查.
抽樣調查:調查部分數據,根據部分來估計總體的調查方式稱為抽樣調查.
總體:要考察的全體對象稱為總體.
個體:組成總體的每一個考察對象稱為個體.
樣本:被抽取的所有個體組成一個樣本.
樣本容量:樣本中個體的數目稱為樣本容量.
頻數:一般地,我們稱落在不同小組中的數據個數為該組的頻數.
頻率:頻數與數據總數的比為頻率.
組數和組距:在統計數據時,把數據按照一定的范圍分成若干各組,分成組的個數稱為組數,每一組兩個端點的差叫做組距.
三、經典例題
例1 某班有50人,其中三好學生10人,優秀學生幹部5人,在扇形統計圖上表示三好學生和優秀學生幹部人數的圓心角分別是( )
A.720,360 B.1000,500 C.1200,600 D.800,400
例2 某音樂行出售三種音樂CD ,即古典音樂、流行音樂、民族音樂,為了表示這三種音樂唱片的銷售量的百分比,應該用( )
A.扇形統計圖 B.折線統計圖 C.條形統計圖 D.以上都可以
例3 在一次抽樣調查中收集了一些數據,對數據進行分組,繪制了下面的頻數分布表:
⑴已知最後一組(89.5-99.5)出現的頻率為15 %,則這一次抽樣調查的容量是________ .
⑵第三小組(69.5~79.5)的頻數是_______,頻率是________.
例4 如圖,是一位護士統計一位病人的體溫變化圖:根據統計圖回答下列問題:
⑴病人的最高體溫是達多少?
⑵什麼時間體溫升得最快?
例5 在一次抽樣調查中收集了一些數據,對數據進行分組,繪制了下面的頻數分布表:
⑴已知最後一組(89.5~99.5)出現的頻率為15 %,則這一次抽樣調查的容量是________ .
⑵第三小組(69.5~79.5)的頻數是_______,頻率是________.
⑧ 七年級下冊數學各個章節的總結怎麼寫
知識結構、主要內容:
整式:代數式分為整式與分式,整式分為單項式與多項式,單項式分為系數、次數;多項式分為項數、次數。
運算:1.去括弧2.合並同類項
同底數冪的×法運算:底數不變,指數相加。
冪的×法:底數不變,指數相×。
積的×方:積中各個因數×方的積
同底數冪相除:底數不變,指數相減。
單項式×多項式 = 多項式×單項式【乘法分配率】= 多項式
多項式×多項式的特例:1.平方差(a+b)(a-b)=aa-bb
2.完全平方差
整式的除法:同底數冪的數相除,同底數冪的指數相減,說的結果相加。
重難點:
整式:1.等式與不等式、分母含有字母的式子,不是整式
1/a,1+2=3,m不等於n,a大於等於b
2.互為相反數的偶數冪相等
a+(-a)=0
3.互為相反數的奇數仍為相反數
a+(-a)=0
4.若底數是互為相反數通過適當方式可交換
{(a)n次方]m次方=(a)m次方n次方
5.指數互為相反數,底數互為倒數
(a) -p次方=(1/a)-p次方
6.兩數和的平方等於兩數的平方和=兩數積的2倍
(a+b)(a+b)=(a+b)平方=a平方+2ab+b平方
⑨ 七年級數學有哪幾章
1.有理數 2.整式的加減 3.一元一次方程 4.幾何圖形初步 不知道新教材有沒有改,反正基本是這樣。祝你學習進步