❶ 小學數學階段的數字課程安排了那幾個知識領域的內容
在各個學段中,《標准》安排了「數與代數」「空間與圖形」「統計與概率」「實踐與綜合應用」四個學習領域。課程內容的學習,強調學生的數學活動,發展學生的數感、符號感、空間觀念、統計觀念、以及應用意識與推理能力。
❷ 小學數學都學些什麼
(一)整數和小數
1.概念:自然數、整數、小數、無限小數、循環小數、純循環小數、數位、計數單位、整數和小數的讀法和寫法、小數的性質、數的改寫和省略、四捨五入法、整除、約數、倍數、最大公約數、最小公倍數、質數、合數、分解質因數、互質數、奇數、偶數、能被2.3.5分別整除的數的特徵。
2.方法:加減乘除的運演算法則、運算順序、運算定律(簡便計算)。
3.解決問題:
(1)分析題意,找出已知條件和所求問題
(2)確定條件和問題之間的數量關系
(3)列式計算。
(二)簡易方程
1.概念:等式、未知數、方程、加減乘除各部分之間的關系。
2.運用:字母表示數、解方程、列方程解決問題(數量關系)。
(三)分數和百分數
1.概念:分數、分數單位、真分數、假分數、分數和除法的關系、分數基本性質、最簡分數、通分、 約分、百分數(百分率)、成數、折數。
2.運用: 分數、小數、百分數之間的互化、分數加減乘除四則運算、簡便運算。
3.解決問題:
(1)求一個量是另一個量的幾分之幾或百分之幾
(2)求一個量比另一個量多或少幾分之幾或百分之幾
(3)求一個量的幾分之幾或百分之幾是多少——單位1已知
(4)已知一個量的幾分之幾或百分之幾是多少,求這個量——單位1未知。
(四)量的計量
1.概念:常見的長度單位、面積單位、體積單位、質量(重量)單位、時間單位、相鄰兩個單位之間的進率、名數、單名數、復名數。
2.運用:名數改寫——高級單位化成低級單位,乘以進率;低級單位化向高級單位,除以進率。
(五)幾何初步知識
1.概念:直線、射線、線段、角和角的分類、垂線、平行線、三角形的分類、三角形內角和、平行四邊形、梯形、高、圓、直徑、半徑、圓周率、扇形、軸對稱圖形、對稱軸。
2.操作:量角、畫角、畫垂線、畫平行線、畫高(三角形 – 梯形 – 平行四邊形)、畫長方形、畫正方形、畫圓、畫半圓、畫對稱軸。
3.計算:面積(三角形 - 梯形 - 平行四邊形 - 長方形 - 正方形 - 圓)、
周長(長方形 - 正方形 - 圓 - 半圓)、
表面積(正方體 - 長方體 - 圓柱體)、
體積(長方體 - 正方體 - 圓柱體 - 圓錐體)。
(六)比和比例
1.概念:比、比與除法和分數的關系、比值、比的基本性質、最簡比、比例、比例的基本性質、比例尺、正比例、反比例。
2.計算:求比值、化簡比、解比例。
3.解決問題:按比例分配、比例尺、正比例、反比例。
(七)簡單的統計
1.會畫統計表或統計圖(條形統計圖、折線統計圖)
2.依據圖表分析問題,解決問題——比如求平均數、一個量比另一個量提高或降低百分之幾等等
❸ 小學數學四大領域包括
四大領域
數與代數:數的認識,數的表示,數的大小,數的運算,數量的估計;
圖形與幾何:空間與平面的基本圖形,圖形的性質和分類;圖形的平移、旋轉、軸對稱;
統計與概率:收集、整理和描述數據,處理數據;
實踐與綜合應用:以一類問題為載體,學生主動參與的學習活動,是幫助學生積累數學活動經驗的重要途徑。
小學數學新課標的基本理念
1.義務教育階段的數學課程應突出體現基礎性、普及性和發展性,使數學教育面向全體學生,實現:人人學有價值的數學;人人都能獲得必需的數學;不同的人在數學上得到不同的發展。
2.數學是人們生活、勞動和學習必不可少的工具,能夠幫助人們處理數據、進行計算、推理和證明,數學模型可以有效地描述自然現象和社會現象;數學為其他科學提供了語言、思想和方法,是一切重大技術發展的基礎;數學在提高人的推理能力、抽象能力、想像力和創造力等方面有著獨特的作用;數學是人類的一種文化,它的內容、思想、方法和語言是現代文明的重要組成部分。
3.學生的數學學習內容應當是現實的、有意義的、富有挑戰性的,這些內容要有利於學生主動地進行觀察、實驗、猜測、驗證、推理與交流等數學活動。
❹ 小學數學四個領域是依據什麼劃分的
《數學課程標准》在每個學段均安排了數與代數、空間與圖形、統計與概率和實踐與綜合運用這四個領域的學習內容.
在小學階段,數與代數領域的學習內容有:數的認識、數的運算、常見的量、式與方程、正反比例和探索規律;空間與圖形領域的學習內容有:圖形的認識、測量、圖形與位置、圖形與變換;統計與概率領域的學習內容有:統計、可能性;實踐與綜合運用領域的學習內容包括:實踐活動、綜合應用.
❺ 小學數學知識可以分成那些板塊
小學數學知識大致可分為四大塊:1.數與代數 2.圖形與幾何 3.統計與概率 4.綜合與實踐 (供參考)
❻ 小學數學分為幾大板塊
按內容分為:數與代數,幾何與圖形,統計與概率,實踐與綜合應用。
按領域分為:知識與技能,數學思考,問題解決,情感與態度。
❼ .小學《數學課程標准》中的四個學習領域是什麼
四個學習領域分別是:"數與代數""空間與圖形""統計與概率""實踐與綜合應用"。
數感主要表現在:理解數的意義;能用多種方法來表示數;能在具體的情境中把握數的相對大小關系;能用數來表達和交流信息;能為解決問題而選擇適當的演算法;能估計運算的結果,並對結果的合理性作出解釋。
符號感主要表現在:能從具體情境中抽象出數量關系和變化規律,並用符號來表示;理解符號所代表的數量關系和變化規律;會進行符號間的轉換;能選擇適當的程序和方法解決用符號所表達的問題。
空間觀念主要表現在:能由實物的形狀想像出幾何圖形,由幾何圖形想像出實物的形狀,進行幾何體與其三視圖、展開圖之間的轉化;能根據條件做出立體模型或畫出圖形;能從較復雜的圖形中分解出基本的圖形,並能分析其中的基本元素及其關系;能描述實物或幾何圖形的運動和變化;能採用適當的方式描述物體間的位置關系;能運用圖形形象地描述問題,利用直觀來進行思考。
統計觀念主要表現在:能從統計的角度思考與數據信息有關的問題;能通過收集數據、描述數據、分析數據的過程作出合理的決策,認識到統計對決策的作用;能對數據的來源、處理數據的方法,以及由此得到的結果進行合理的質疑。
應用意識主要表現在:認識到現實生活中蘊含著大量的數學信息、數學在現實世界中有著廣泛的應用;面對實際問題時,能主動嘗試著從數學的角度運用所學知識和方法尋求解決問題的策略;面對新的數學知識時,能主動地尋找其實際背景,並探索其應用價值。
推理能力主要表現在:能通過觀察、實驗、歸納、類比等獲得數學猜想,並進一步尋求證據、給出證明或舉出反例;能清晰、有條理地表達自己的思考過程,做到言之有理、落筆有據;在與他人交流的過程中,能運用數學語言合乎邏輯地進行討論與質疑。
(7)小學數學知識分哪些領域擴展閱讀
數學是人們對客觀世界定性把握和定量刻畫、.逐漸抽象概括、形成方法和理論,並進行廣泛應用的過程。20世紀中葉以來,數學自身發生了巨大的變化,特別是與計算機的結合,使得數學在研究領域、研究方式和應用范圍等方面得到了空前的拓展。
數學可以幫助人們更好地探求客觀世界的規律,並對現代社會中大量紛繁復雜的信息作出恰當的選擇與判斷,同時為人們交流信息提供了一種有效、簡捷的手段。數學作為一種普遍適用的技術,有助於人們收集、整理、描述信息,建立數學模型,進而解決問題,直接為社會創造價值。
義務教育階段的數學課程,其基本出發點是促進學生全面、持續、和諧地發展。它不僅要考慮數學自身的特點,更應遵循學生學習數學的心理規律,強調從學生已有的生活經驗出發,讓學生親身經歷將實際問題抽象成數學模型並進行解釋與應用的過程,進而使學生獲得對數學理解的同時,在思維能力、情感態度與價值觀等多方面得到進步和發展。
參考資料來源:網路-全日制義務教育·數學課程標准
參考資料來源:網路-數學課程標准
❽ 小學數學分為幾大塊每塊都包括什麼內容
分為四大塊,分別是數與代數,圖形與幾何,統計與概率,綜合與實踐。
1、數與代數主要包括,數的讀寫方法(整數,小數,分數),數的改寫(化成用萬、億作單位的數,求近似數等),數的大小比較(整數,小數,分數的大小比較),四則運算(計演算法則,運算順序,運算定律等),
量的計量(質量,長度,面積,時間,體積(容積)、人民幣等,以及單位間的換算)。
2、幾何與圖形包括,認識圖形(圖形的名稱,各部分名稱,特點,性質,圖形之間的關系等等),觀察物體,計算平面圖形的面積、立體圖形的表面積和體積,圖形的運動(平移和旋轉),位置與方向等。
3、統計與概率主要包括:統計表,統計圖(條形,扇形,折線等等)平均數眾數,概率等。
(8)小學數學知識分哪些領域擴展閱讀:
意義:
小學數學的基礎知識包括:概念、定律、性質、法則、公式等,其中數學概念不僅是數學基礎知識的重要組成部分,而且是學習其他數學知識的基礎。學生掌握基礎知識的過程,實際上就是掌握概念並運用概念進行判斷、推理的過程。數學中的法則都是建立在一系列概念的基礎上的。
❾ 小學數學基礎知識包括哪幾個方面
數學與計算、量與計量、百分數、比和比例、應用題、代數初步知識、幾何初步知識、統計初步知識八大部分