A. 數學計算公式有哪些
1、加法交換律
兩個數相加,交換加數的位置,它們的和不變,即a+b=b+a 。
2、加法結合律
三個數相加,先把前兩個數相加,再加上第三個數;或者先把後兩個數相加,再和第一個數相加它們的和不變,即(a+b)+c=a+(b+c) 。
3、乘法交換律
兩個數相乘,交換因數的位置它們的積不變,即a×b=b×a。
4、乘法結合律
三個數相乘,先把前兩個數相乘,再乘以第三個數;或者先把後兩個數相乘,再和第一個數相乘,它們的積不變,即(a×b)×c=a×(b×c) 。
5、乘法分配律
兩個數的和與一個數相乘,可以把兩個加數分別與這個數相乘再把兩個積相加,即(a+b)×c=a×c+b×c 。
6、減法的性質
從一個數里連續減去幾個數,可以從這個數里減去所有減數的和,差不變,即a-b-c=a-(b+c) 。
B. 小學數學簡便計算公式
小學數學簡便運算方法歸類
1、帶符號搬家法(根據:加法交換律和乘法交換率)
當一個計算題只有同一級運算(只有乘除或只有加減運算)又沒有括弧時,我們可以「帶 符號搬家」。
(a+b+c=a+c+b,a+b-c=a-c+b,a-b+c=a+c-b,a-b-c=a-c-b;a×b×c=a×c×b,
a÷b÷c=a÷c÷b,a×b÷c=a÷c×b,a÷b×c=a×c÷b)
二、結合律法
(一)加括弧法
1.當一個計算題只有加減運算又沒有括弧時,我們可以在加號後面直接添括弧,括到括弧里的運算原來是加還是加,是減還是減。但是在減號後面添括弧時,括到括弧里的運算,原來是加,現在就要變為減;原來是減,現在就要變為加。(即在加減運算中添括弧時,括弧前是加號,括弧里不變號,括弧前是減號,括弧里要變號。)
a+b+c=a+(b+c), a+b-c=a +(b-c), a-b+c=a-(b-c), a-b-c= a-( b +c);
2.當一個計算題只有乘除運算又沒有括弧時,我們可以在乘號後面直接添括弧,括到括弧里的運算,原來是乘還是乘,是除還是除。但是在除號後面添括弧時,括到括弧里的運算,原來是乘,現在就要變為除;原來是除,現在就要變為乘。(即在乘除運算中添括弧時,括弧前是乘號,括弧里不變號,括弧前是除號,括弧里要變號。)
a×b×c=a×(b×c), a×b÷c=a×(b÷c), a÷b÷c=a÷(b×c), a÷b×c=a÷(b÷c)
(二)去括弧法
1.當一個計算題只有加減運算又有括弧時,我們可以將加號後面的括弧直接去掉,原來是加現在還是加,是減還是減。但是將減號後面的括弧去掉時,原來括弧里的加,現在要變為減;原來是減,現在就要變為加。(現在沒有括弧了,可以帶符號搬家了哈) (註:去掉括弧是添加括弧的逆運算)
a+(b+c)= a+b+c a +(b-c)= a+b-c a- (b-c)= a-b+c a-( b +c)= a-b-c
2.當一個計算題只有乘除運算又有括弧時,我們可以將乘號後面的括弧直接去掉,原來是乘還是乘,是除還是除。但是將除號後面的括弧去掉時,原來括弧里的乘,現在就要變為除;原來是除,現在就要變為乘。(現在沒有括弧了,可以帶符號搬家了哈) (註:去掉括弧是添加括弧的逆運算)
a×(b×c) = a×b×c, a×(b÷c) = a×b÷c, a÷(b×c) = a÷b÷c , a÷(b÷c) = a÷b×c
三、乘法分配律法
1.分配法
括弧里是加或減運算,與另一個數相乘,注意分配
24×(---)
2.提取公因式
注意相同因數的提取。
0.92×1.41+0.92×8.59 ×-×
3.注意構造,讓算式滿足乘法分配律的條件。
×103-×2- 2.6×9.9
四、借來還去法
看到名字,就知道這個方法的含義。用此方法時,需要注意觀察,發現規律。還要注意還哦 ,有借有還,再借不難嘛。
9999+999+99+9 4821-998
5、拆分法
顧名思義,拆分法就是為了方便計算把一個數拆成幾個數。這需要掌握一些「好朋友」,如:2和5,4和5,2和2.5,4和2.5,8和1.25等。分拆還要注意不要改變數的大小哦。
3.2×12.5×25 1.25×88 3.6×0.25
6、巧變除為乘
也就是說,把除法變成乘法,例如:除以可以變成乘4。
7.6÷0.25 3.5÷0.125
7、裂項法
分數裂項是指將分數算式中的項進行拆分,使拆分後的項可前後抵消,這種拆項計算稱為裂項法.常見的裂項方法是將數字分拆成兩個或多個數字單位的和或差。遇到裂項的計算題時,要仔細的觀察每項的分子和分母,找出每項分子分母之間具有的相同的關系,找出共有部分,裂項的題目無需復雜的計算,一般都是中間部分消去的過程,這樣的話,找到相鄰兩項的相似部分,讓它們消去才是最根本的。
分數裂項的三大關鍵特徵:
(1)分子全部相同,最簡單形式為都是1的,復雜形式可為都是x(x為任意自然數)的,但是只要將x提取出來即可轉化為分子都是1的運算。
(2)分母上均為幾個自然數的乘積形式,並且滿足相鄰2個分母上的因數「首尾相接」
(3)分母上幾個因數間的差是一個定值。
分數裂項的最基本的公式
這一種方法在一般的小升初考試中不常見,屬於小學奧數方面的知識。有餘力的孩子可
以學一下。
C. 小學數學中的計算公式大全
小學的數學所有公式
1、 每份數×份數=總數 總數÷每份數=份數
總數÷份數=每份數
2、 1倍數×倍數=幾倍數 幾倍數÷1倍數=倍數
幾倍數÷倍數= 1倍數
3、 速度×時間=路程 路程÷速度=時間
路程÷時間=速度
4、 單價×數量=總價 總價÷單價=數量
總價÷數量=單價
5、 工作效率×工作時間=工作總量
工作總量÷工作效率=工作時間
工作總量÷工作時間=工作效率
6、 加數+加數=和 和-一個加數=另一個加數
7、 被減數-減數=差 被減數-差=減數
差+減數=被減數
8、 因數×因數=積 積÷一個因數=另一個因數
9、 被除數÷除數=商 被除數÷商=除數
商×除數=被除數
小學數學圖形計算公式
1、 正方形:C周長 S面積 a邊長
周長=邊長×4C=4a
面積=邊長×邊長S=a×a
2、正方體:V:體積 a:棱長
表面積=棱長×棱長×6
S表=a×a×6
體積=棱長×棱長×棱長 V=a×a×a
3、長方形: C周長 S面積 a邊長
周長=(長+寬)×2 C=2(a+b)
面積=長×寬 S=ab
4、長方體:V:體積 s:面積 a:長 b: 寬 h:高
(1)表面積(長×寬+長×高+寬高)×2 S=2(ab+ah+bh)
(2)體積=長×寬×高 V=abh
5、三角形 s面積 a底 h高
面積=底×高÷2 s=ah÷2
三角形高=面積 ×2÷底
三角形底=面積 ×2÷高
6、平行四邊形:s面積 a底 h高
面積=底×高 s=ah
7、梯形:s面積 a上底 b下底 h高
面積=(上底+下底)×高÷2 s=(a+b)×h÷2
8 、圓形:S面 C周長 ∏ d=直徑 r=半徑
(1)周長=直徑×∏=2×∏×半徑 C=∏d=2∏r
(2)面積=半徑×半徑×∏
9、圓柱體:v:體積 h:高 s:底面積 r:底面半徑
c:底面周長
(1)側面積=底面周長×高
(2)表面積=側面積+底面積×2
(3)體積=底面積×高
(4)體積=側面積÷2×半徑
10、圓錐體:v體積 h高 s底面積 r底面半徑
體積=底面積×高÷3
總數÷總份數=平均數
和差問題的公式
(和+差)÷2=大數 (和-差)÷2=小數
和倍問題
和÷(倍數-1)=小數 小數×倍數=大數
(或者 和-小數=大數)
差倍問題
差÷(倍數-1)=小數 小數×倍數=大數
(或 小數+差=大數)
植樹問題
1、非封閉線路上的植樹問題主要可分為以下三種情形:
⑴如果在非封閉線路的兩端都要植樹,那麼:
株數=段數+1=全長÷株距-1
全長=株距×(株數-1)
株距=全長÷(株數-1)
⑵如果在非封閉線路的一端要植樹,另一端不要植樹,那麼:
株數=段數=全長÷株距
全長=株距×株數
株距=全長÷株數
⑶如果在非封閉線路的兩端都不要植樹,那麼:
株數=段數-1=全長÷株距-1
全長=株距×(株數+1)
株距=全長÷(株數+1)
2、封閉線路上的植樹問題的數量關系如下
株數=段數=全長÷株距
全長=株距×株數 株距=全長÷株數
盈虧問題
(盈+虧)÷兩次分配量之差=參加分配的份數
(大盈-小盈)÷兩次分配量之差=參加分配的份數
(大虧-小虧)÷兩次分配量之差=參加分配的份數
相遇問題
相遇路程=速度和×相遇時間
相遇時間=相遇路程÷速度和
速度和=相遇路程÷相遇時間
追及問題
追及距離=速度差×追及時間
追及時間=追及距離÷速度差
速度差=追及距離÷追及時間
流水問題
順流速度=靜水速度+水流速度
逆流速度=靜水速度-水流速度
靜水速度=(順流速度+逆流速度)÷2
水流速度=(順流速度-逆流速度)÷2
濃度問題
溶質的重量+溶劑的重量=溶液的重量
溶質的重量÷溶液的重量×100%=濃度
溶液的重量×濃度=溶質的重量
溶質的重量÷濃度=溶液的重量
利潤與折扣問題
利潤=售出價-成本
利潤率=利潤÷成本×100%=(售出價÷成本-1)×100%
漲跌金額=本金×漲跌百分比
折扣=實際售價÷原售價×100%(折扣<1)
利息=本金×利率×時間
稅後利息=本金×利率×時間×(1-20%)
長度單位換算
1千米=1000米 1米=10分米 1分米=10厘米
1米=100厘米 1厘米=10毫米
面積單位換算
1平方千米=100公頃 1公頃=10000平方米
1平方米=100平方分米 1平方分米=100平方厘米
1平方厘米=100平方毫米
體(容)積單位換算
1立方米=1000立方分米 1立方分米=1000立方厘米
1立方分米=1升 1立方厘米=1毫升
1立方米=1000升
重量單位換算
1噸=1000 千克 1千克=1000克 1千克=1公斤
人民幣單位換算
1元=10角 1角=10分 1元=100分
時間單位換算
1世紀=100年 1年=12月
大月(31天)有: 1\3\5\7\8\10\12月
小月(30天)的有: 4\6\9\11月
平年 2月28天, 閏年 2月29天
平年全年365天, 閏年全年366天
1日=24小時 1小時=60分
1分=60秒 1小時=3600秒
小學數學幾何形體周長 面積 體積計算公式
1、長方形的周長=(長+寬×2 C=(a+b)×2
2、正方形的周長=邊長×4 C=4a
3、長方形的面積=長×寬 S=ab
4、正方形的面積=邊長×邊長 S=a.a= a
5、三角形的面積=底×高÷2 S=ah÷2
6、平行四邊形的面積=底×高 S=ah
7、梯形的面積=(上底+下底)×高÷2
S=(a+b)h÷2
8、直徑=半徑×2 d=2r
半徑=直徑÷2 r= d÷2
9、圓的周長=圓周率×直徑=圓周率×半徑×2
c=πd =2πr
10、圓的面積=圓周率×半徑×半徑
變化的量
圖上距離/實際距離=比例尺
圖上距離=比例尺×實際距離
實際距離=圖上距離÷比例尺
正比例的關系式x/y=k(一定)
反比例的關系式x.y=k(一定)
D. 數學∑怎麼算
1、∑符號表示求和,∑讀音為sigma,英文意思為Sum,Summation,就是和。
∑公式計算:表示起和止的數。比如說下面i=2,上面數字10,表示從2起到10止。
如:10∑(2i+1)表示和式:(2*2+1)+(2*3+1)+(2*4+1)+......+(2*10+1)=222。
i=2式子中的2i+1是數列的通項公式Ai,i是項的序數,i=2表示從數列{2i+1}的第二項開始計算,頂上的10是運算到的10項截止。
2、∑的用法:
其中i表示下界,n表示上界,k從i開始取數,一直取到n,全部加起來。
∑i這樣表達也可以,表示對i求和,i是變數。
基本信息
在數學中,我們把∑作為求和符號使用;用小寫字母σ,表示標准差。
在物理中,我們把它的小寫字母σ,用來表示面密度。(相應地,ρ表示體密度,η表示線密度)。面密度在工程材料方面是指定厚度的物質單位面積的質量。
在化學中,我們把它的小寫字母σ,用來表示共價鍵的一種。由兩個原子軌道沿軌道對稱軸方向相互重疊導致電子在核間出現概率增大而形成的共價鍵,叫做σ鍵。σ鍵屬於定域鍵,它可以是一般共價鍵,也可以是配位共價鍵。一般的單鍵都是σ鍵。
E. 數學豎式計算的方法 有哪些
加法豎式計算方法:
數位對齊:個位對個位,十位對十位,加號往前移,計算先從個位算起,個位數和個位數相加,得數寫在個位上,十位數與十位數相加,得數寫在十位上。
減法豎式計算方法:
數位對齊,個位對個位,十位對十位,減號往前移,計算先從個位起,個位相減,得數寫在個位上,十位相減,得數寫在十位上。
豎式計算方法:
用豎式計算時,首先我們應該先寫「廠」號;然後再寫被除數,被除數應該寫在「廠」號的裡面;之後再寫除數,除數應該寫在「廠」號的左邊;最後我們就開始試商了,商應該與被除數的相應數位對齊寫在「廠」的上面;除數與商的積寫在被除數的下面(相應數位對齊) 。
被除數減去除數和商的積所得的差就是余數,余數寫在橫線的下面(與上面相應的數位對齊)被除數里最多有幾個除數,商是幾括弧里就填幾。
F. 小學數學怎樣計算比較簡單啊
1、1.2×46=55.2
2、0.12×10=1.2
3、0.45×48=21.6
4、1.52×68=103.36
5、9.9×45=445.5
6、1.5×20=30
7、0.5×30=15
8、0.3×70=21
9、1.3×60=78
10、2.5×50=125
(6)在數學上怎麼計算擴展閱讀:
豎式計算是指在計算過程中列一道豎式計算,使計算簡便。加法計算時相同數位對齊,若和超過10,則向前進1。減法計算時相同數位對齊,若不夠減,則向前一位借1當10。
1、加法:相同數位對齊,若和超過10,則向前進1。
2、減法:相同數位對齊,若不夠減,則向前一位借1當10。
3、乘法:一個數的第i位乘上另一個數的第j位,就應加在積的第i+j-1位上。
4、除法:如42除以7。從4開始除〔從高位到低位〕。除法用豎式計算時,從最高位開始除起,如:42就從最高位十位4開始除起;
若除不了,如:4不能除以7,那麼就用最高位和下一位合成一個數來除,直到能除以除數為止;如:42除7中4不能除7,就把4和2合成一個數42來除7,商為6。
G. 數學中計算步驟是什麼怎麼算一個步驟
數學中的運算步驟是指運算的順序:先進行第二級運算(乘或除),再進行第一級運算(加或減),有括弧的按照先小括弧,再中括弧、最後大括弧的順序計算。
H. 如何進行數學計算
數學豎式計算的格式:
加減法:
豎式是指在計算過程中列一道豎著的式子,使計算簡便。每一個過渡數都是由上一個過渡數變化而後,上一個過渡數的個位數乘以2,如果需要進位,則往前面進1,然後個位升十位,以此類推,而個位上補上新的運算數字。
I. 小學數學快速計算方法是什麼
一、加法交換律與加法結合律
加法交換律:
兩個數相加,交換加數的位置,它們的和不變。即a+b=b+a
一般地,多個數相加,任意改變相加的次序,其和不變。
a+b+c+d=d+b+a+c
加法結合律:
幾個數相加,先把前兩個數相加,再加上第三個數;或者,先把後兩個數相加,再與第一個數相加,它們的和不變。即:a+b+c=(a+b)+c=a+(b+c),
二、速算與巧算中常用的三大基本思想
1、湊整(目標:整十整百整千...)
2、分拆(分拆後能夠湊成整十整百整千...)
3、組合(合理分組再組合)
三、常見方法
湊整法
兩個數相加,若能恰好湊成整十、整百、整千、整萬…,就把其中的一個數叫做另一個數的"補數",利用"補數"巧算加法,通常稱為"湊整法"
如:1+9=10,3+7=10,2+8=10,4+6=10,5+5=10。
又如:11+89=100,33+67=100,22+78=100,44+56=100,55+45=100,
在上面算式中,1叫9的"補數";89叫11的"補數",11也叫89的"補數"。也就是說兩個數互為"補數"。
對於一個較大的數,如何能很快地算出它的"補數"來呢?一般來說,可以這樣"湊"數:從最高位湊起,使各位數字相加得9,到最後個位數字相加得10。
如:87655→12345,46802→53198,87362→12638。
利用"補數"巧算加法,通常稱為"湊整法"。
巧算下面各題:
①36+87+64
②99+136+101
③1361+972+639+28
解:
①式=(36+64)+87=100+87=187
②式=(99+101)+136=200+136=336
③式=(1361+639)+(972+28)=2000+1000=3000
魏德武速算
魏氏速算它可以不藉助任何計算工具在很短時間內就能使學習者,用一種思維,一種方法快速准確地掌握任意數加、減、乘、除的速算方法。從而達到快速提高學習者口算和心算的速算能力。
1、加法速算:計算任意位數的加法速算,方法很簡單學習者只要熟記一種加法速算通用口訣——「本位相加(針對進位數)減加補,前位相加多加一」就可以徹底解決任意位數從高位數到低位數的加法速算方法,比如:
(1),67+48=(6+5)×10+(7-2)=115;
(2)758+496=(7+5)×100+(5-0)×10+8-4=1254即可。
2、減法速算:計算任意位數的減法速算方法也同樣是用一種減法速算通用口訣——「本位相減(針對借位數)加減補,前位相減多減一」就可以徹底解決任意位數從高位數到低位數的減法速算方法,比如:
(1),67-48=(6-5)×10+(7+2)=19;
(2),758-496=(7-5)×100+(5+1)×10+8-6=262即可。
以上內容參考網路-數學速演算法