㈠ 一年級下冊數學什麼比什麼多幾什麼比什麼少幾,用加法還是用減法的,應該怎麼講小孩才容易聽懂
可以用實物進行說明,比如說3個蘋果比2個蘋果多一個,2個蘋果比3個蘋果少一個
㈡ 數學除了加減乘除外還有什麼演算法
還有取模運算,取模運算一般都是使用在編程語言的,%就是取模運算符,它屬於二級運算;在數學的領域上%在大部分情況下是百分號的意思
一級運算有:+(加法),-(減法),二級運算有:*(乘法,可以寫成×),/(分數線(=)除法,可以寫成÷),%(取模,求余,但是在數學的領域%大多部分情況下是百分號的意思),三級運算有:^(乘方,可以寫成**),√(開方,也可以寫成//)
取模運算:
a%b=a - c*b
若a=7,b=6
∴a%b =7%6=1;
演算法很簡單,
親手繪畫,寫字寫的丑不要在意
求模運算和求余運算在第一步不同: 取余運算在取b的值時,向0 方向舍入(fix()函數);而取模運算在計算b的值時,向負無窮方向舍入(floor()函數)。
給定一個正整數p,任意一個整數n,一定存在等式 :
n = kp + r ;
其中 k、r 是整數,且 0 ≤ r < p,則稱 k 為 n 除以 p 的商,r 為 n 除以 p 的余數。
對於正整數 p 和整數 a,b,定義如下運算:
取模運算:a % p(或a mod p),表示a除以p的余數。
模p加法: ,其結果是a+b算術和除以p的余數。
模p減法: ,其結果是a-b算術差除以p的余數。
模p乘法: ,其結果是 a * b算術乘法除以p的余數。
1. 同餘式:正整數a,b對p取模,它們的余數相同,記做 或者a ≡ b (mod p)。
2. n % p 得到結果的正負由被除數n決定,與p無關。例如:7%4 = 3, -7%4 = -3, 7%-4 = 3, -7%-4 = -3。
基本性質
若p|(a-b),則a≡b (% p)。例如 11 ≡ 4 (% 7), 18 ≡ 4(% 7)
(a % p)=(b % p)意味a≡b (% p)
對稱性:a≡b (% p)等價於b≡a (% p)
傳遞性:若a≡b (% p)且b≡c (% p) ,則a≡c (% p)
乘方運算
3^3=27 (3^3=3*3*3=27)
開方運算
27√3=3 (27 / 3 / 3 = 3)
乘方和開方可能很多人都知道了,這么不多說了
㈢ 小學數學的計算中,演算法有哪些例如:湊十法,想加算減
演算法也就只有整數、小數、分數、百分數的加、減、乘、除,四則混合運算,乘方(只限於平方、立方),小數、分數、百分數的互化,形體周長、面積、體積計算,計量單位的換算,簡單的有理數加減法。
至於運算的技巧就有很多,一般都是運算定律、性質進行簡便計算,如加法交換律、加法結合律、連減性質、乘法交換律、乘法結合率、除法商不變性質,……很多,教師會在不同的階段教學生靈活運用這些知識,提高學生的計算能力。
你說的湊十法只是計算技巧的一種。
㈣ 小學數學有哪些簡便演算法,你知道嗎
對於那些成績較差的小學生來說,學習小學數學都有很大的難度,其實小學數學屬於基礎類的知識比較多,只要掌握一定的技巧還是比較容易掌握的.在小學,是一個需要養成良好習慣的時期,注重培養孩子的習慣和學習能力是重要的一方面,那小學數學有哪些技巧?
一、重視課內聽講,課後及時進行復習.
新知識的接受和數學能力的培養主要是在課堂上進行的,所以我們必須特別注意課堂學習的效率,尋找正確的學習方法.在課堂上,我們必須遵循教師的思想,積極制定以下步驟,思考和預測解決問題的思想與教師之間的差異.特別是,我們必須了解基本知識和基本學習技能,並及時審查它們以避免疑慮.首先,在進行各種練習之前,我們必須記住教師的知識點,正確理解各種公式的推理過程,並試著記住而不是採用"不確定的書籍閱讀".勤於思考,對於一些問題試著用大腦去思考,認真分析問題,嘗試自己解決問題.
二、多做習題,養成解決問題的好習慣.
如果你想學好數學,你需要提出更多問題,熟悉各種問題的解決問題的想法.首先,我們先從課本的題目為標准,反復練習基本知識,然後找一些課外活動,幫助開拓思路練習,提高自己的分析和掌握解決的規律.對於一些易於查找的問題,您可以准備一個用於收集的錯題本,編寫自己的想法來解決問題,在日常養成解決問題的好習慣.學會讓自己高度集中精力,使大腦興奮,快速思考,進入最佳狀態並在考試中自由使用.
三、調整心態並正確對待考試.
首先,主要的重點應放在基礎、基本技能、基本方法,因為大多數測試出於基本問題,較難的題目也是出自於基本.所以只有調整學習的心態,盡量讓自己用一個清楚的頭腦去解決問題,就沒有太難的題目.考試前要多對習題進行演練,開闊思路,在保證真確的前提下提高做題的速度.對於簡單的基礎題目要拿出二十分的把握去做;難得題目要盡量去做對,使自己的水平能正常或者超常發揮.
由此可見小學數學的技巧就是多做練習題,掌握基本知識.另外就是心態,不能見考試就膽怯,調整心態很重要.所以大家可以遵循這些技巧,來提高自己的能力,使自己進入到數學的海洋中去.
㈤ 數學建模中,給出非常多的節點,求這些節點的最短路徑(類似一條線的路徑),應該用什麼演算法好
下面是我自己編寫的一段代碼,用來求過包含兩千多個點的最短路,速度很快,比遺傳、蟻群快而且最短路更短。你可以試試看,有問題再問我。
function [S,len]=short(P)
% 此程序用來求相同類型點間的最短路
% P表示某一類型的點的坐標矩陣
% p是最短路徑
% d是路徑權值和
%建立權值矩陣
n=length(P);%求該類型點的數量
W=zeros(n,n);
for i=1:n %計算權值並填充權值矩陣,由於各點聯通,此權值矩陣就是該圖的最短路矩陣
for j=(i+1):n
W(i,j)=sqrt((P(i,1)-P(j,1))^2+(P(i,2)-P(j,2))^2);
end
end
for i=2:n
for j=1:(i-1)
W(i,j)=W(j,i);
end
end
%求通過所有點的最短路
%先求從i點至j點,必須通過指定其他n-2個點的最短路,選出其中的的最短路
S=zeros(1,n);
S(1)=1; %先插入1,2點,以此為基準,每次插進一個新點
S(2)=2;
d1=2*W(1,2);
for i=3:n %新加入的點的標號
d1i=zeros(1,i); %插入第i個點,有i中可能的距離,其中最小值將為該輪的d1
for j=1:i %新加入點的位置,插入第i個點是有i個空位可供選擇
if j==1 %在第一個空位插入
d1i(j)=d1+W(i,S(1))+W(i,S(i-1))-W(S(1),S(i-1)); %插入點在首端時,距離為原距離與第i點與上一次插入後的第1位置的點之間距離之和
end
if j>1 & j<i %在中間的空位插入
d1i(j)=d1+W(S(j-1),i)+W(i,S(j))-W(S(j-1),S(j));
end
if j==i
d1i(j)=d1+W(S(i-1),i)+W(S(1),i)-W(S(1),S(i-1));
end
end
[d1,I]=min(d1i);
S((I+1):i)=S(I:(i-1)); %將第I位後面的點後移一位
S(I)=i;%將第i點插入在I位置
end
len=d1;
下面這段代碼是我用來把上面的結果保存到txt文件中的代碼,如果你需要,可以用用。代碼是我上次用過的沒有改,你自己按照需要自己改吧。
clear
close all
clc
loaddata
X=[C;E;I;J];
[S,len]=short(X);
DrawPath(S,X);
print(1,'-dpng','cmeiju3.png');
% 將結果保存至txt文件
fid=fopen('cmeijulujin.txt','wt'); %創建alunjin.txt文件
fprintf(fid,'c號刀具\n');
fprintf(fid,'%d %d\n',X(S));
save('cmeijus','S');
save('cmeijulen','len');
㈥ 數學建模網路流演算法重要嗎你們都用什麼演算法呢
1、蒙特卡羅演算法(該演算法又稱隨機性模擬演算法,是通過計算機模擬來解決問題的演算法,
同時可以通過模擬可以來檢驗自己模型的正確性,是比賽時必用的方法)
2、數據擬合、參數估計、插值等數據處理演算法(比賽中通常會遇到大量的數據需要處理,
而處理數據的關鍵就在於這些演算法,通常使用matlab作為工具)
3、線性規劃、整數規劃、多元規劃、二次規劃等規劃類問題(建模競賽大多數問題屬於最優化問題,
很多時候這些問題可以用數學規劃演算法來描述,通常使用lindo、lingo軟體實現)
4、圖論演算法(這類演算法可以分為很多種,包括最短路、網路流、二分圖等演算法,
涉及到圖論的問題可以用這些方法解決,需要認真准備)
5、動態規劃、回溯搜索、分治演算法、分支定界等計算機演算法(這些演算法是演算法設計中比較常用的方法,很多場合可以用到競賽中)
6、最優化理論的三大非經典演算法:模擬退火法、神經網路、遺傳演算法
(這些問題是用來解決一些較困難的最優化問題的演算法,對於有些問題非常有幫助,
但是演算法的實現比較困難,需慎重使用)
7、網格演算法和窮舉法(網格演算法和窮舉法都是暴力搜索最優點的演算法,在很多競賽題中有應用,
當重點討論模型本身而輕視演算法的時候,可以使用這種暴力方案,最好使用一些高級語言作為編程工具)
8、一些連續離散化方法(很多問題都是實際來的,數據可以是連續的,而計算機只認的是離散的數據,因此將其離散化後進行差分代替微分、求和代替積分等思想是非常重要的)
9、數值分析演算法(如果在比賽中採用高級語言進行編程的話,那一些數值分析中常用的演算法比
如方程組求解、矩陣運算、函數積分等演算法就需要額外編寫庫函數進行調用)
10、圖象處理演算法(賽題中有一類問題與圖形有關,即使與圖形無關,論文中也應該要不乏圖片的,
這些圖形如何展示以及如何處理就是需要解決的問題,通常使用matlab進行處理)
㈦ 關於數學建模中用到的數學理論和編程演算法
關於程序,我建議你用matlab或者mathmaticas,用這類專用數學軟體比較好,因為我知道絕大多數人對C及C++的掌握還不至於到能夠熟練寫出你上述的各種演算法(當然一些的簡單的可以參考ACM的相關書籍),況且在實際工作中很多科學工作者或是工程師都是用Matlab之類的數學軟體,所以我也建議你用。
至於你是工科的(我也是),所以我也能夠理解你想學習上述各種演算法等的想法,但是我覺得這個真的不太現實,我自己也很愛好數學,在平時我也經常學習各種非自己專業的數學知識,但是實際上你學習了之後也要理解,更何況你要運用它到非常熟練的程度(絕非一般考試可比),所以我認為你就必須要非常有選擇的看,而且強烈建議你先做好規劃(一定要符合自己實際情況,不要貪心),然後抓緊學。
我看你上面列的,其中組合數學非常難,但是你一定要非常踏實地學好(這個會應用在許多連你自己都想不到的地方),另外圖論也是必須的,但這里我建議你先學習《離散數學》中的「圖論」,當你以後在運用中如果遇到更高深的理論再去參考專門的圖論書籍也不遲。另外微分方程我建議你先學習一些基礎的知識即可,因為在建模中大多數情況下我覺得你只要會建立就行了,這塊內容不用涉入太深,不然太費時間。至於你後面列的一些演算法,這個沒辦法迴避的,但也不是說你要一個個看過來,當然你可以考慮先走馬觀花地掃一遍,然後在仔細深入地學習集中重要的,相對出現幾率大的演算法。建議你多多拿題目來練習,在練題的過程中順帶學習相應知識,這樣效率比較高。
其他的我也幫不了什麼,關鍵你自己要抓緊,效率要大大提高。最後祝你好運!
㈧ 數學中的累加演算法是什麼啊
所謂累加演算法,是高中數學的數列中求an的一種常用演算法!
也沒有題目,所以不便說明,LZ要想真正理解,可以找個題目,我幫你做,然後給你講!
㈨ 數學建模演算法有哪些
1. 蒙特卡羅演算法。 該演算法又稱隨機性模擬演算法,是通過計算機模擬來解決問題的演算法,同時可以通過模擬來檢驗自己模型的正確性,幾乎是比賽時必用的方法。
2. 數據擬合、參數估計、插值等數據處理演算法。 比賽中通常會遇到大量的數據需要處理,而處理數據的關鍵就在於這些演算法,通常使用MATLAB 作為工具。
3. 線性規劃、整數規劃、多元規劃、二次規劃等規劃類演算法。 建模競賽大多數問題屬於最優化問題,很多時候這些問題可以用數學規劃演算法來描述,通常使用Lindo、Lingo 軟體求解。
4. 圖論演算法。 這類演算法可以分為很多種,包括最短路、網路流、二分圖等演算法,涉及到圖論的問題可以用這些方法解決,需要認真准備。
5. 動態規劃、回溯搜索、分治演算法、分支定界等計算機演算法。 這些演算法是演算法設計中比較常用的方法,競賽中很多場合會用到。
6. 最優化理論的三大非經典演算法:模擬退火演算法、神經網路演算法、遺傳演算法。 這些問題是用來解決一些較困難的最優化問題的,對於有些問題非常有幫助,但是演算法的實現比較困難,需慎重使用。
7. 網格演算法和窮舉法。 兩者都是暴力搜索最優點的演算法,在很多競賽題中有應用,當重點討論模型本身而輕視演算法的時候,可以使用這種暴力方案,最好使用一些高級語言作為編程工具。
8. 一些連續數據離散化方法。 很多問題都是實際來的,數據可以是連續的,而計算機只能處理離散的數據,因此將其離散化後進行差分代替微分、求和代替積分等思想是非常重要的。
9. 數值分析演算法。 如果在比賽中採用高級語言進行編程的話,那些數值分析中常用的演算法比如方程組求解、矩陣運算、函數積分等演算法就需要額外編寫庫函數進行調用。
10. 圖象處理演算法。 賽題中有一類問題與圖形有關,即使問題與圖形無關,論文中也會需要圖片來說明問題,這些圖形如何展示以及如何處理就是需要解決的問題,通常使用MATLAB 進行處理。
以下將結合歷年的競賽題,對這十類演算法進行詳細地說明。
以下將結合歷年的競賽題,對這十類演算法進行詳細地說明。
2 十類演算法的詳細說明
2.1 蒙特卡羅演算法
大多數建模賽題中都離不開計算機模擬,隨機性模擬是非常常見的演算法之一。
舉個例子就是97 年的A 題,每個零件都有自己的標定值,也都有自己的容差等級,而求解最優的組合方案將要面對著的是一個極其復雜的公式和108 種容差選取方案,根本不可能去求解析解,那如何去找到最優的方案呢?隨機性模擬搜索最優方案就是其中的一種方法,在每個零件可行的區間中按照正態分布隨機的選取一個標定值和選取一個容差值作為一種方案,然後通過蒙特卡羅演算法模擬出大量的方案,從中選取一個最佳的。另一個例子就是去年的彩票第二問,要求設計一種更好的方案,首先方案的優劣取決於很多復雜的因素,同樣不可能刻畫出一個模型進行求解,只能靠隨機模擬模擬。
2.2 數據擬合、參數估計、插值等演算法
數據擬合在很多賽題中有應用,與圖形處理有關的問題很多與擬合有關系,一個例子就是98 年美國賽A 題,生物組織切片的三維插值處理,94 年A 題逢山開路,山體海拔高度的插值計算,還有吵的沸沸揚揚可能會考的「非典」問題也要用到數據擬合演算法,觀察數據的走向進行處理。此類問題在MATLAB中有很多現成的函數可以調用,熟悉MATLAB,這些方法都能游刃有餘的用好。
2.3 規劃類問題演算法
競賽中很多問題都和數學規劃有關,可以說不少的模型都可以歸結為一組不等式作為約束條件、幾個函數表達式作為目標函數的問題,遇到這類問題,求解就是關鍵了,比如98年B 題,用很多不等式完全可以把問題刻畫清楚,因此列舉出規劃後用Lindo、Lingo 等軟體來進行解決比較方便,所以還需要熟悉這兩個軟體。
2.4 圖論問題
98 年B 題、00 年B 題、95 年鎖具裝箱等問題體現了圖論問題的重要性,這類問題演算法有很多,包括:Dijkstra、Floyd、Prim、Bellman-Ford,最大流,二分匹配等問題。每一個演算法都應該實現一遍,否則到比賽時再寫就晚了。
2.5 計算機演算法設計中的問題
計算機演算法設計包括很多內容:動態規劃、回溯搜索、分治演算法、分支定界。比如92 年B 題用分枝定界法,97 年B 題是典型的動態規劃問題,此外98 年B 題體現了分治演算法。這方面問題和ACM 程序設計競賽中的問題類似,推薦看一下《計算機演算法設計與分析》(電子工業出版社)等與計算機演算法有關的書。
2.6 最優化理論的三大非經典演算法
這十幾年來最優化理論有了飛速發展,模擬退火法、神經網路、遺傳演算法這三類演算法發展很快。近幾年的賽題越來越復雜,很多問題沒有什麼很好的模型可以借鑒,於是這三類演算法很多時候可以派上用場,比如:97 年A 題的模擬退火演算法,00 年B 題的神經網路分類演算法,象01 年B 題這種難題也可以使用神經網路,還有美國競賽89 年A 題也和BP 演算法有關系,當時是86 年剛提出BP 演算法,89 年就考了,說明賽題可能是當今前沿科技的抽象體現。03 年B 題伽馬刀問題也是目前研究的課題,目前演算法最佳的是遺傳演算法。
2.7 網格演算法和窮舉演算法
網格演算法和窮舉法一樣,只是網格法是連續問題的窮舉。比如要求在N 個變數情況下的最優化問題,那麼對這些變數可取的空間進行采點,比如在[a; b] 區間內取M +1 個點,就是a; a+(b-a)/M; a+2 (b-a)/M; …… ; b 那麼這樣循環就需要進行(M + 1)N 次運算,所以計算量很大。比如97 年A 題、99 年B 題都可以用網格法搜索,這種方法最好在運算速度較快
的計算機中進行,還有要用高級語言來做,最好不要用MATLAB 做網格,否則會算很久的。窮舉法大家都熟悉,就不說了。
2.8 一些連續數據離散化的方法
大部分物理問題的編程解決,都和這種方法有一定的聯系。物理問題是反映我們生活在一個連續的世界中,計算機只能處理離散的量,所以需要對連續量進行離散處理。這種方法應用很廣,而且和上面的很多演算法有關。事實上,網格演算法、蒙特卡羅演算法、模擬退火都用了這個思想。
2.9 數值分析演算法
這類演算法是針對高級語言而專門設的,如果你用的是MATLAB、Mathematica,大可不必准備,因為象數值分析中有很多函數一般的數學軟體是具備的。
2.10 圖象處理演算法
01 年A 題中需要你會讀BMP 圖象、美國賽98 年A 題需要你知道三維插值計算,03 年B 題要求更高,不但需要編程計算還要進行處理,而數模論文中也有很多圖片需要展示,因此圖象處理就是關鍵。做好這類問題,重要的是把MATLAB 學好,特別是圖象處理的部分。
㈩ 數學建模全國獲獎的論文大多都採用的是什麼演算法是不是某些演算法獲獎的概率比較高
演算法的設計的好壞將直接影響運算速度的快慢,建議多用數學軟體(
Mathematice,Matlab,Maple, Mathcad,Lindo,Lingo,SAS 等),這里提供十種數學
建模常用演算法,僅供參考:
1、 蒙特卡羅演算法(該演算法又稱隨機性模擬演算法,是通過計算機模擬來解決
問題的演算法,同時可以通過模擬可以來檢驗自己模型的正確性,是比賽時必
用的方法)
2、數據擬合、參數估計、插值等數據處理演算法(比賽中通常會遇到大量的數
據需要處理,而處理數據的關鍵就在於這些演算法,通常使用Matlab 作為工具)
3、線性規劃、整數規劃、多元規劃、二次規劃等規劃類問題(建模競賽大多
數問題屬於最優化問題,很多時候這些問題可以用數學規劃演算法來描述,通
常使用Lindo、Lingo 軟體實現)
4、圖論演算法(這類演算法可以分為很多種,包括最短路、網路流、二分圖等算
法,涉及到圖論的問題可以用這些方法解決,需要認真准備)
5、動態規劃、回溯搜索、分治演算法、分支定界等計算機演算法(這些演算法是算
法設計中比較常用的方法,很多場合可以用到競賽中)
6、最優化理論的三大非經典演算法:模擬退火法、神經網路、遺傳演算法(這些
問題是用來解決一些較困難的最優化問題的演算法,對於有些問題非常有幫助,
但是演算法的實現比較困難,需慎重使用)
7、網格演算法和窮舉法(網格演算法和窮舉法都是暴力搜索最優點的演算法,在很
多競賽題中有應用,當重點討論模型本身而輕視演算法的時候,可以使用這種
暴力方案,最好使用一些高級語言作為編程工具)
8、一些連續離散化方法(很多問題都是實際來的,數據可以是連續的,而計
算機只認的是離散的數據,因此將其離散化後進行差分代替微分、求和代替
積分等思想是非常重要的)
9、數值分析演算法(如果在比賽中採用高級語言進行編程的話,那一些數值分
析中常用的演算法比如方程組求解、矩陣運算、函數積分等演算法就需要額外編
寫庫函數進行調用)
10、圖象處理演算法(賽題中有一類問題與圖形有關,即使與圖形無關,論文
中也應該要不乏圖片的,這些圖形如何展示以及如何處理就是需要解決的問
題,通常使用Matlab 進行處理)