導航:首頁 > 數字科學 > 考研考基礎數學的學什麼

考研考基礎數學的學什麼

發布時間:2022-11-27 17:17:14

Ⅰ 數學專業考研考什麼科目

數學專業一般有以下幾個方向:(01)基礎數學;(02)計算數學 ;(03)應用數學 ;(04)運籌學與控制論 。具體的考試科目看報考哪個學校。初試一般英語政治統考,然後是專業課。數學分析和高等代數是一定會考的,有的學校還有考其他科目,比如:常微分,復變,實變等。具體情況要到報考的高校官網查詢。

(1)考研考基礎數學的學什麼擴展閱讀:

(一)、中華人民共和國公民。

(二)、擁護中國共產黨的領導,品德良好,遵紀守法。

(三)、身體健康狀況符合國家和招生單位規定的體檢要求。

(四)、考生必須符合下列學歷等條件之一:

1、國家承認學歷的應屆本科畢業生(錄取當年9月1日前須取得國家承認的本科畢業證書。含普通高等學校、成人高校、普通高等學校舉辦的成人高等學歷教育應屆本科畢業生,及自學考試和網路教育屆時可畢業本科生)。

2、具有國家承認的大學本科畢業學歷的人員。

3、獲得國家承認的高職高專畢業學歷後滿2年(從畢業後到錄取當年9月1日,下同)或2年以上,達到與大學本科畢業生同等學力,且符合招生單位根據本單位的培養目標對考生提出的具體業務要求的人員。

4、國家承認學歷的本科結業生,按本科畢業生同等學力身份報考。

5、已獲碩士、博士學位的人員。

6、在校研究生報考須在報名前徵得所在培養單位同意。

資料來源:網路-考研

Ⅱ 請問考研基礎數學要考什麼科目

數學:理工類(數一、數二)經濟類(數三)。

數一:高數56%、線性代數22%、概率統計22%,數二:高數78%、線性代數22%、不考概率統計,數三:高數56%、線性代數22%、概率統計22%,一般情況下,工科類的為數學一和數學二。

考數一的專業

其中工學類中的力學、機械工程、光學工程、儀器科學與技術、冶金工程、動力工程及工程熱物理、電氣工程、電子科學與技術、信息與通信工程、控制科學與工程、計算機科學與技術、土木工程、水利工程、測繪科學與技術、交通運輸工程、船舶與海洋科學與技術。

兵器科學與技術、核科學與技術、生物醫學工程等20個一級學科中所有的二級學科和專業,以及授予工學學位的管理科學與工程的一級學科均要求使用數學一考試試卷。

考數二的專業

而工學類中的紡織科學與工程、輕工技術與工程、農業工程、林業工程、食品科學與工程等5個一級學科中的二級學科和專業均要求使用是數學二考試試卷。

除此之外,還有一些工科類要求的數學試卷難易程度是由招生單位決定的,比如材料科學與工程、化學工程與技術、地質資料與地質工程、礦業工程、石油與天然氣工程、環境科學與工程等一級學科,對數學要求高的二級學科則選取數學一,要求較低的則選取數學二。

考數三的專業

經濟類和管理類的為數學三,經濟類和管理類包括經濟學類的各一級學科、管理學類中的工商管理、農業經濟管理的一級學科和授予管理學學位的管理科學與工程的一級學科。

(2)考研考基礎數學的學什麼擴展閱讀:

不考數學的研究生專業

法律碩士、工商管理碩士、漢語言文學、歷史、哲學、新聞學、傳播學、播音主持、采訪編輯、藝術類、圖書管理學、勞動與社會保障、法學、社會學、服裝設計、工業設計(藝術類)等。

視學校而定的專業

裝潢設計、醫學類、生物科學、行政管理、心理學(在應用心理學中,需要考統計學)、英語(科技英語有的學校要考)、園林設計(主要看農業學校而定),等。

Ⅲ 考研數學考什麼

考研數學一考試內容:高等數學(函數、極限、連續、一元函數微積分學、向量代數與空間解析幾何、多元函數的微積分學、無窮級數、常微分方程),線性代數(行列式、矩陣、向量、線性方程組、矩陣的特徵值和特徵向量、二次型),概率論與數理統計。

考研數學二:高等數學:函數、極限、連續、一元函數微積分學、多元函數的微積分學、常微分方程,線性代數:行列式、矩陣、向量、線性方程組、 矩陣的特徵值和特徵向量、二次型。

考研數學三:微積分:函數、極限、連續、一元函數微積分學、多元函數微積分學、無窮級數、常 微分方程與差分方程,線性代數:行列式、矩陣、向量、線性方程組、矩陣的特徵值和特徵 向量、二次型。

考研數學注意事項

對於大部分同學而言,由於高等數學學習的時間比較早,而且原來學習所針對的難度並不是很大,加上遺忘,現在數學知識恐怕已經所剩無幾了。所以,這一遍強調學習,要拿出重新學習的勁頭親自動手去做,去思考。

學習的過程中一定要力求全部理解和掌握知識點,考試大綱因為不是按照課本的章節次序編寫的,所以可以先學習一段時間之後再比照大綱,對知識點的復習情況進行評估。多動筆,動手計算,把每一道大題的結果都算出來,不要覺得會思路就不用做了,要做到"做得對"。

Ⅳ 考研考數學的專業

考研考數學的專業有:基礎數學、計算數學、應用數學等。

1、基礎數學

3、應用數學

應用數學包括兩個部分,一部分就是與應用有關的數學,另外一部分是數學的應用,即以數學為工具,探討解決科學、工程學和社會學方面的問題。

Ⅳ 考研數學考的是什麼內容

考研數學考的內容有:高等數學,線性代數,微積分,概率論和數理統計。

Ⅵ 數學與應用數學考研考哪些科目

數學與應用數學考研科目:思想政治理論、考研英語一或法語、分析、代數與幾何。這四門科目都是統考科目。

應用數學考研滿分為500分,其中思想政治理論滿分為100分,研英語一或法語滿分為100分,分析滿分為150分,代數與幾何滿分為150分。

應用數學考研方向:

1、基礎數學

基礎數學是數學下設的二級學科之一。基礎數學又稱為純粹數學,是數學科學的核心與基礎部分。基礎數學包括數理邏輯、數論、代數、幾何、拓撲、函數論、泛函分析和微分方程等分支學科。

2、應用數學

應用數學是數學下設的二級學科之一。應用數學是應用目的明確的數學理論和方法的總稱,研究如何應用數學知識到其它范疇(尤其是科學)的數學分枝,可以說是純數學的相反。

包括微分方程、向量分析、矩陣、傅里葉變換、復變分析、數值方法、概率論、數理統計、運籌學、控制理論、組合數學、資訊理論等許多數學分支,也包括從各種應用領域中提出的數學問題的研究。計算數學有時也可視為應用數學的一部分。

3、學科教學(數學)

學科教學(數學)專業為專業碩士。專業碩士和學術學位處於同一層次,培養方向各有側重。專業碩士主要面向經濟社會產業部門專業需求,培養各行各業特定職業的專業人才,其目的重在知識、技術的應用能力。

4、計算數學

計算數學是數學下設的一個二級學科。它主要研究有關的數學和邏輯問題怎樣由計算機加以有效解決。計算數學的內容計算數學也叫做數值計算方法或數值分析。

Ⅶ 數學專業考研考哪些科目

政治,英語,數學分析,高等數學,這四個一般是數學考研初試必考的。至於復試就每個學校都不太一致了,不過一般都是考微分方程與復變函數。

數學專業考研方向主要集中在:

1、基礎數學(應用數學)

要求考生具備基礎數學、概率論、微積分分析、計算機理論、統計分析等學科知識。

2、概率論與數理統計(概率與統計精算)

要求考生具備基礎數學、概率論、數理統計分析、時間序列分析、隨機分析、信息技術、計算機等相關學科知識。

3、數學工程的科學與工程計算系

要求考生具備基礎數學、應用數學、信息技術、計算機科學、數據處理和系統分析,工程學、以及數字圖像等學科知識。

數學專業就業前景

IT業職員:多數人會成為一名軟體人才,這需要扎實的數學功底,嚴密的邏輯思維能力。

商務人員:不僅需要有扎實的數學基礎,能熟練地運用現代數學方法和數據對未來變化的趨勢做出分析判斷,同時也需要具有堅實的經濟理論基礎。

教師:國家對教師的需求量大,其中對數學,語文等基礎學科的教師需求量最大。

Ⅷ 考研數學考什麼書

考研數學考以下書:

數學一:

高等數學(函數、極限、連續、一元函數的微積分學、向量代數與空間解析幾何、多元函數的微積分學、無窮級數、常微分方程);線性代數;概率論與數理統計。

數學二:

高等數學(函數、極限、連續、一元函數微積分學、微分方程);線性代數。

數學三:

高等數學(函數、極限、連續、一元函數微積分學、多元函數微積分學、無窮級數、常微分方程與差分方程);線性代數;概率論與數理統計。

數學四:

高等數學(函數、極限、連續、一元函數微積分學、多元函數微積分學、常微分方程);線性代數;概率論。

首先對基本概念要理解其含義,對基本公式和定理要弄清楚其使用的前提條件,對結論與條件之間的邏輯關系要理解清楚,對基本方法要通過一定的練習來掌握。

有些同學不注重基礎知識的學習和訓練,一開始就想啃高難度的習題,結果效率很低、進展很慢,以後也難以提高,同時還容易挫傷和打擊自己的積極性和信心,所以大家要避免這種做法。

Ⅸ 考研數學考的是什麼內容

《數學》網路網盤免費下載

鏈接: https://pan..com/s/1B9X8x_q8Nbfez8IadsjyZw 提取碼: 2wnd

考研時的知識點基本上都是高數、線代與概率論的知識點。一般統考不會超過課本知識,但是難度比課本習題難度大很多。一般可以參考每年的數學考研大綱。數學一考研數學內容:

高等數學

一、函數、極限、連續

考試內容:函數的概念及表示法函數的有界性、單調性、周期性和奇偶性復合函數、反函數、分段函數和隱函數

二、一元函數微分學

考試內容:導數和微分的概念導數的幾何意義和物理意義函數的可導性與連續性之間的關系平面曲線的切線和法;線導數和微分的四則運算基本初等函數的導數復合函數、反函數、隱函數以及參數方程所確定的函數的微分法高階導數。

一階微分形式的不變性微分中值定理洛必達(L'Hospital)法則函數單調性的判別函數的極值函數圖形的凹凸性、拐點及漸近線函數圖形的描繪函數的最大值與最小值弧微分曲率的概念曲率圓與曲率半徑

四、向量代數和空間解析幾何

考試內容:向量的概念向量的線性運算向量的數量積和向量積向量的混合積兩向量垂直、平行的條件兩向量的夾角向量的坐標表達式及其運算單位向量方向數與方向餘弦曲面方程和空間曲線方程的概念

平面方程直線方程平面與平面、平面與直線、直線與直線的夾角以及平行、垂直的條件點到平面和點到直線的距離球面柱面旋轉曲面常用的二次曲面方程及其圖形空間曲線的參數方程和一般方程空間曲線在坐標面上的投影曲線方程

五、多元函數微分學

考試內容:多元函數的概念二元函數的幾何意義二元函數的極限與連續的概念有界閉區域上多元連續函數的性質多元函數的偏導數和全微分全微分存在的必要條件和充分條件多元復合函數、隱函數的求導法二階偏導數方向導數和梯度空間曲線的切線和法平面曲面的切平面和法線二元函數的二階泰勒公式多元函數的極值和條件極值多元函數的最大值、最小值及其簡單應用

六、多元函數積分學

考試內容:二重積分與三重積分的概念、性質、計算和應用兩類曲線積分的概念、性質及計算兩類曲線積分的關系格林(Green)公式平面曲線積分與路徑無關的條件二元函數全微分的原函數兩類曲面積分的概念、性質及計算兩類曲面積分的關系高斯(Gauss)公式斯托克斯(Stokes)公式散度、旋度的概念及計算曲線積分和曲面積分的應用

七、無窮級數

考試內容常數項級數的收斂與發散的概念收斂級數的和的概念級數的基本性質與收斂的必要條件幾何級數與級數及其收斂性正項級數收斂性的判別法交錯級數與萊布尼茨定理任意項級數的絕對收斂與條件收斂函數項級數的收斂域與和函數的概念冪級數及其收斂半徑、收斂區間(指開區間)和收斂域

冪級數的和函數冪級數在其收斂區間內的基本性質簡單冪級數的和函數的求法初等函數的冪級數展開式函數的傅里葉(Fourier)系數與傅里葉級數狄利克雷(Dirichlet)定理函數在上的傅里葉級數函數在上的正弦級數和餘弦級數

八、常微分方程

考試內容:常微分方程的基本概念變數可分離的微分方程齊次微分方程一階線性微分方程伯努利(Bernoulli)方程全微分方程可用簡單的變數代換求解的某些微分方程可降階的高階微分方程線性微分方程解的性質及解的結構定理二階常系數齊次線性微分方程高於二階的某些常系數齊次線性微分方程簡單的二階常系數非齊次線性微分方程歐拉(Euler)方程微分方程的簡單應用

線性代數

一、行列式

考試內容行列式的概念和基本性質行列式按行(列)展開定理

二、矩陣

考試內容:矩陣的概念矩陣的線性運算矩陣的乘法方陣的冪方陣乘積的行列式矩陣的轉置逆矩陣的概念和性質矩陣可逆的充分必要條件伴隨矩陣矩陣的初等變換初等矩陣矩陣的秩矩陣的等價分塊矩陣及其運算

三、向量

考試內容:向量的概念向量的線性組合與線性表示向量組的線性相關與線性無關向量組的極大線性無關組等價向量組向量組的秩向量組的秩與矩陣的秩之間的關系向量空間及其相關概念維向量空間的基變換和坐標變換過渡矩陣向量的內積線性無關向量組的正交規范化方法規范正交基正交矩陣及其性質

四、線性方程組

考試內容:線性方程組的克拉默(Cramer)法則齊次線性方程組有非零解的充分必要條件非齊次線性方程組有解的充分必要條件線性方程組解的性質和解的結構齊次線性方程組的基礎解系和通解解空間非齊次線性方程組的通解

五、矩陣的特徵值和特徵向量

考試內容:矩陣的特徵值和特徵向量的概念、性質相似變換、相似矩陣的概念及性質矩陣可相似對角化的充分必要條件及相似對角矩陣實對稱矩陣的特徵值、特徵向量及其相似對角矩陣

六、二次型

考試內容:二次型及其矩陣表示合同變換與合同矩陣二次型的秩慣性定理二次型的標准形和規范形用正交變換和配方法化二次型為標准形二次型及其矩陣的正定性

概率論與數理統計

一、隨機事件和概率

考試內容:隨機事件與樣本空間事件的關系與運算完備事件組概率的概念概率的基本性質古典型概率幾何型概率條件概率概率的基本公式事件的獨立性獨立重復試驗

二、隨機變數及其分布

考試內容:隨機變數隨機變數分布函數的概念及其性質離散型隨機變數的概率分布連續型隨機變數的概率密度常見隨機變數的分布隨機變數函數的分布

三、多維隨機變數及其分布

考試內容:多維隨機變數及其分布二維離散型隨機變數的概率分布、邊緣分布和條件分布二維連續型隨機變數的概率密度、邊緣概率密度和條件密度隨機變數的獨立性和不相關性常用二維隨機變數的分布兩個及兩個以上隨機變數簡單函數的分布

四、隨機變數的數字特徵

考試內容:隨機變數的數學期望(均值)、方差、標准差及其性質隨機變數函數的數學期望矩、協方差、相關系數及其性質

五、大數定律和中心極限定理

考試內容:切比雪夫(Chebyshev)不等式切比雪夫大數定律伯努利(Bernoulli)大數定律辛欽(Khinchine)大數定律棣莫弗-拉普拉斯(DeMoivre-Laplace)定理列維-林德伯格(Levy-Lindberg)定理

六、數理統計的基本概念

考試內容:總體個體簡單隨機樣本統計量樣本均值樣本方差和樣本矩分布分布分布分位數正態總體的常用抽樣分布

七、參數估計

考試內容:點估計的概念估計量與估計值矩估計法最大似然估計法估計量的評選標准區間估計的概念單個正態總體的均值和方差的區間估計兩個正態總體的均值差和方差比的區間估計

八、假設檢驗

考試內容:顯著性檢驗假設檢驗的兩類錯誤單個及兩個正態總體的均值和方差的假設檢驗



閱讀全文

與考研考基礎數學的學什麼相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:739
乙酸乙酯化學式怎麼算 瀏覽:1404
沈陽初中的數學是什麼版本的 瀏覽:1350
華為手機家人共享如何查看地理位置 瀏覽:1042
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:884
數學c什麼意思是什麼意思是什麼 瀏覽:1408
中考初中地理如何補 瀏覽:1299
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:701
數學奧數卡怎麼辦 瀏覽:1387
如何回答地理是什麼 瀏覽:1023
win7如何刪除電腦文件瀏覽歷史 瀏覽:1055
大學物理實驗干什麼用的到 瀏覽:1484
二年級上冊數學框框怎麼填 瀏覽:1699
西安瑞禧生物科技有限公司怎麼樣 瀏覽:973
武大的分析化學怎麼樣 瀏覽:1248
ige電化學發光偏高怎麼辦 瀏覽:1337
學而思初中英語和語文怎麼樣 瀏覽:1650
下列哪個水飛薊素化學結構 瀏覽:1423
化學理學哪些專業好 瀏覽:1486
數學中的棱的意思是什麼 瀏覽:1057