A. 怎麼計算概率
概率是對事件發生可能性大小的度量。不會發生的概率為0,一定會發生的概率是100%,也可以說是1.例如拋硬幣,正面和反面出現的可能性都是50%,篩子每面出現的可能性都是六分之一,這些概率值通過直覺和經驗就能想出來。雖然我們知道實驗幾次不一定是這個結果,但試驗次數很多時,出現的頻率就會接近概率值,無窮次時,頻率就會等於概率。
通過直觀和經驗就能知道概率的幾個基本命題,也可以說是公理,蘇聯的數學家柯爾莫哥洛夫總結了3條概率公理。
1. 事件發生的概率不小於0
2. 集合中的事件必有一件發生,則發生的概率之和等於1
3. 集合中事件互相不容,沒有交集,則發生至少一個的概率等於每個事件概率之和
這3個公理不需記憶,應用時也不需刻意用,用直覺和經驗靠算術思維就能想出概率計算方法。
通過這3個公理也可以推導出6個定理,也不需記憶,甚至不需要知道。
概率計算不像方程應用,簡單地分別考慮每個數值含義列出等式,然後變換方程就能求解。列概率算式無法這樣做,那些概率定理和概率公式以及寫法,如:貝葉斯公式 P(A|B)=P(B|A)*P(A)/P(B) ,對列出概率算式幫助不大,也無法降低分析和推理難度,也就是說概率知識的公理化意義不大。概率計算時,只需按算術思維,按直覺和經驗直接列出算式,然後進行四則運算即可。簡單的場合,可以直接列出一個算式就可以算出概率值,在稍微復雜的場合需要分別列出幾個算式,然後再去轉換,這些復雜場合的概率演算法常見的有頻次演算法,集合對應演算法,和反向演算法。
B. 概率是怎麼計算的
P(A)=A所含樣本點數/總體所含樣本點數。實用中經常採用「排列組合」的方法計算·
定理:設A、B是互不相容事件(AB=φ),則:
P(A∪B)=P(A)+P(B)
推論1:設A1、 A2、…、 An互不相容,則:P(A1+A2+...+ An)= P(A1) +P(A2) +…+ P(An)
推論2:設A1、 A2、…、 An構成完備事件組,則:P(A1+A2+...+An)=1
(2)數學中的概率怎麼計算方法擴展閱讀
條件概率
條件概率:已知事件B出現的條件下A出現的概率,稱為條件概率,記作:P(A|B)
條件概率計算公式:
當P(A)>0,P(B|A)=P(AB)/P(A)
當P(B)>0,P(A|B)=P(AB)/P(B)
乘法公式
P(AB)=P(A)×P(B|A)=P(B)×P(A|B)
推廣:P(ABC)=P(A)P(B|A)P(C|AB)
參考資料來源:網路-概率計算
C. 初中數學幾種求概率的方法,可以收藏
一、列表法求概率:列表法的應用場合:當一次試驗要設計兩個因素, 並且可能出現的結果數目較多時,為不重不漏地列出所有可能的結果,通常採用列表法。
二、樹狀圖法求概率:運用樹狀圖法求概率的條件,當一次試驗要設計三個或更多的因素時,用列表法就不方便了,為了不重不漏地列出所有可能的結果 ,通常採用樹狀圖法求概率。
概率是度量偶然事件發生可能性的數值。
假如經過多次重復試驗(用X代表),偶然事件(用A代表)出現了若干次(用Y代表)。以X作分母,Y作分子,形成了數值(用P代表)。在多次試驗中,P相對穩定在某一數值上,P就稱為A出現的概率。如偶然事件的概率是通過長期觀察或大量重復試驗來確定,則這種概率為統計概率或經驗概率。
D. 概率的基本公式大全
概率的基本公式大全:
1、條件概率:P(B|A)=P(AB)/P(A);
2、貝葉斯公式:P(Bi|A)=P(A|Bi)P(Bi)/∑nj=1P(A|Bj)P(Bj);
3、全概率公式:P(A)=P(A|B1)P(B1)+P(A|B2)P(B2)+...+P(A|Bn)P(Bn);
4、乘法定理:P(AB)=P(B|A)P(A)
《概率論與數理統計》著重基本概念的闡釋,同時,在設定的數學程度內,力求做到論述嚴謹。書中精選了百餘道習題,並在書末附有提示與解答。《概率論與數理統計》可作為高等學校理工科非數學系的概率統計課程教材,也可供具有相當數學准備(初等微積分及少量矩陣知識)的讀者自修之用。
E. 高中數學概率計演算法則
高中數學概率計演算法則主要為概率的加法法則
概率的加法法則為:
推論1:設A1、 A2、…、 An互不相容,則:P(A1+A2+...+ An)= P(A1) +P(A2) +…+ P(An)
推論2:設A1、 A2、…、 An構成完備事件組,則:P(A1+A2+...+An)=1
推論3:若B包含A,則P(B-A)= P(B)-P(A)
推論4(廣義加法公式):對任意兩個事件A與B,有P(A∪B)=P(A)+P(B)-P(AB)
以上公式就被稱為全概率公式。
F. 初中數學中的概率怎麼計算
您好。P(A)=A所含樣本點數/總體所含樣本點數。實用中經常採用「排列組合」的方法計算。
G. 概率的計算公式是什麼
P(AB)=P(A)P(B/A)=P(B)P(A/B)
條件概率表示為:P(A|B),讀作「在B的條件下A的概率」。條件概率可以用決策樹進行計算。條件概率的謬論是假設 P(A|B) 大致等於 P(B|A)。
數學家John Allen Paulos 在他的《數學盲》一書中指出醫生、律師以及其他受過很好教育的非統計學家經常會犯這樣的錯誤。這種錯誤可以通過用實數而不是概率來描述數據的方法來避免。
(7)數學中的概率怎麼計算方法擴展閱讀:
1、統計獨立性
當且僅當兩個隨機事件A與B滿足
P(A∩B)=P(A)P(B)
的時候,它們才是統計獨立的,這樣聯合概率可以表示為各自概率的簡單乘積。
同樣,對於兩個獨立事件A與B有
P(A|B)=P(A)
以及
P(B|A)=P(B)
換句話說,如果A與B是相互獨立的,那麼A在B這個前提下的條件概率就是A自身的概率;同樣,B在A的前提下的條件概率就是B自身的概率。
2、互斥性
當且僅當A與B滿足
P(A∩B)=0
且P(A)≠0,P(B)≠0
的時候,A與B是互斥的。
因此,
P(A|B)=0
P(B|A)=0
換句話說,如果B已經發生,由於A不能和B在同一場合下發生,那麼A發生的概率為零;同樣,如果A已經發生,那麼B發生的概率為零。
H. 初中概率怎麼算
概率是初中數學的常考知識點,考題難度不大,但總有一部分同學因為粗心、因為混淆概念等等的小錯誤就丟了分數。所以下面我整理了相關內容,供大家參考。
1、概率的加法
定理:設A、B是互不相容事件(AB=φ),則:P(A∪B)=P(A)+P(B)。
推論1:設A1、 A2、…、 An互不相容,則:P(A1+A2+...+ An)= P(A1) +P(A2) +…+ P(An。
推論2:設A1、 A2、…、 An構成完備事件組,則:P(A1+A2+...+An)=1。
推論3: P(A)+1-P(A),A為事件A的對立事件。
推論4:若B包含A,則P(B-A)= P(B)-P(A)。
推論5(廣義加法公式):對任意兩個事件A與B,有P(A∪B)=P(A)+P(B)-P(AB)。
2、乘法公式
P(AB)=P(A)×P(B|A)=P(B)×P(A|B);
推廣:P(ABC)=P(A)P(B|A)P(C|AB)。
一、列表法求概率
1、列表法
用列出表格的方法來分析和求解某些事件的概率的方法叫做列表法。
2、列表法的應用場合
當一次試驗要設計兩個因素, 並且可能出現的結果數目較多時,為不重不漏地列出所有可能的結果,通常採用列表法。
二、樹狀圖法求概率
1、樹狀圖法
就是通過列樹狀圖列出某事件的所有可能的結果,求出其概率的方法叫做樹狀圖法。
2、運用樹狀圖法求概率的條件
當一次試驗要設計三個或更多的因素時,用列表法就不方便了,為了不重不漏地列出所有可能的結果 ,通常採用樹狀圖法求概率。
三、利用頻率估計概率
1、利用頻率估計概率
在同樣條件下,做大量的重復試驗,利用一個隨機事件發生的頻率逐漸穩定到某個常數,可以估計這個事件發生的概率。
2、在統計學中,常用較為簡單的試驗方法代替實際操作中復雜的試驗來完成概率估計,這樣的試驗稱為模擬實驗。
3、隨機數
在隨機事件中,需要用大量重復試驗產生一串隨機的數據來開展統計工作。把這些隨機產生的數據稱為隨機數。
I. 概率公式怎麼計算
概率=符合條件的數目/總數目
概率,又稱或然率、機會率或機率、可能性,是數學概率論的基本概念,是一個在0到1之間的實數,是對隨機事件發生的可能性的度量.
概率的公式很多,不知道你要哪個方面的:
1.P(Φ)=0. 性質2(有限可加性).當n個事件A1,…,An兩兩互不相容時: P(A1∪...∪An)=P(A1)+...+P(An). _ 性質3.對於任意一個事件A:P(A)=1-P(非A). 性質4.當事件A,B滿足A包含於B時:P(BnA)=P(B)-P(A),P(A)≤P(B). 性質5.對於任意一個事件A,P(A)≤1. 性質6.對任意兩個事件A和B,P(B-A)=P(B)-P(AB). 性質7(加法公式).對任意兩個事件A和B,P(A∪B)=P(A)+P(B)-P(A∩B). (註:A後的數字1,2,...,n都表示下標.)
更多公式見參考資料