① 高一上學期數學學什麼
第一章 集合與簡易邏輯 一 集合 1.1 集合 1.2 子集、全集、補集 1.3 交集、並集 1.4 含絕對值的不等式解法 1.5 一元二次不等式解法 閱讀材料 集合中元素的個數 二 簡易邏輯 1.6 邏輯聯結詞 1.7 四種命題 1.8 充分條件與必要條件 小結與復習 復習參考題一 第二章 函數 一 函數 2.1 函數 2.2 函數的表示法 2.3 函數的單調性 2.4 反函數 二 指數與指數函數 2.5 指數 2.6 指數函數 三 對數與對數函數 2.7 對數 閱讀材料 對數的發明 2.8 對數函數 2.9 函數的應用舉例 閱讀材料 自由落體運動的數學模型h(t)=1/2gt^2 實習作業 建立實際問題的函數模型 小結與復習 復習參考題二 第三章 數列 3.1 數列 3.2 等差數列 3.3 等差數列的前n項和 閱讀材料 有關儲蓄的計算 3.4 等比數列 3.5 等比數列的前n項和 研究性學習課題:數列在分期付款中的應用 小結與復習 復習參考題三 (人教版)
② 高一數學學哪些內容 學哪幾本書
很多學生都不知道高一數學學什麼,下面我整理了一些相關信息,供大家參考!
高一上學期有的地方是學習必修一和必修四,必修一的主要內容是《集合》、《函數》,必修四的主要內容是《三角函數》、《向量》。但是有些地方是學習必修一和必修二,必修二的主要內容是《立體幾何》,簡單的《解析幾何》。如初中所學習的直線方程,園的方程以及他們的一些性質關系等。
在高一上學期,必修一是一定要學的,函數這一章一定要學好,它包括函數的概念,圖像,性質以及一些基本函數,如二次函數,指數函數,對數函數,冪函數等。
必修三中的內容要簡單一些,包括《統計初步》、《演算法》、《概率》。除 了演算法外,其他內容我們在初中都已經接觸過。
到了高二要學習必修五,主要內容是《數列》,《不等式》等,對於我們在高一學習的解析幾何,到了高二還要學《圓錐曲線》等。當然,函數與導數,參數方程與極坐標也應該是高二學習的內容。地方不同,還有些選學的內容也不同。
首先,在課堂教學中培養好的聽課習慣是很重要的。當然聽是主要的,聽能使注意力集中,要把老師講的關鍵性部分聽懂、聽會。聽的時候注意思考、分析問題,但是光聽不記,或光記不聽必然顧此失彼,課堂效益低下,因此應適當地有目的性的記好筆記,領會課上老師的主要精神與意圖。科學的記筆記可以提高4 5 分鍾課堂效益。
其次,要提高數學能力,當然是通過課堂來提高,要充分利用好課堂這塊陣地,學習數學的過程是活的,老師教學的對象也是活的,都在隨著教學過程的發展而變化,尤其是當老師注重能力教學的時候,教材是反映不出來的。數學能力是隨著知識的發生而同時形成的,無論是形成一個概念,掌握一條法則,會做一個習題,都應該從不同的能力角度來培養和提高。 課堂上通過老師的教學,理解所學內容在教材中的地位,弄清與前後知識的聯系等,只有把握住教材,才能掌握學習的主動。
再次,如果數學課沒有一定的速度,那是一種無效學習。慢騰騰的學習是訓練不出思維速度,訓練不出思維的敏捷性,是培養不出數學能力的,這就要求在數學學習中一定要有節奏,這樣久而久之,思維的敏捷性和數學能力會逐步提高。
最後,在數學課堂中,老師一般少不了提問與板演,有時還伴隨 著問題討論,因此可以聽到許多的信息,這些問題是很有價值的。對於那些典型問題,帶有普遍性的問題都必須及時解決,不能把問題的結症遺留下來,甚至沉澱下來,有價值的問題要及時抓住,遺留問題要有針對性地補,注重實效。
③ 高一上期數學主要內容是什麼高一上學期數學主要講
高一上學期上課是必修一和必修四(有的學校會調整),必修一第一章主要講集合,函數的基本性質(定義域,值域,單調性,最值,奇偶性),第二章主要講的就是三個函數,指數函數,對數函數,冪函數,第三章主要講的就是零點,和用二分法求方程的近似解,必修四主要講的就是三角函數了
④ 高一數學學的什麼內容
高一數學內容有《集合》、《函數》、《三角函數》、《向量》。
根據地區不同,有些地方是學習必修一和必修二,必修二的主要內容是《立體幾何》,簡單的《解析幾何》。有些地方是學習必修一和必修四,必修四的主要內容是《三角函數》、《向量》。必修一是一定要學的,包括《集合》、《函數》。
高一數學怎麼學
首先,在課堂教學中培養好的聽課習慣是很重要的;其次,要提高數學能力,堂上通過老師的教學,理解所學內容在教材中的地位,弄清與前後知識的聯系等,只有把握住教材,才能掌握學習的主動。
再次,要求在數學學習中一定要有節奏,這樣久而久之,思維的敏捷性和數學能力會逐步提高;最後,要沉澱下來,有價值的問題要及時抓住,遺留問題要有針對性地補,注重實效。
⑤ 高一數學總共有多少節課
一般一星期5節左右,但是內容實際大概只有3節就能講完的。一學年大概100節左右,如果您的接受能力好得話,我想學完2,3本書,一個月左右就能搞定。現在家教的價格一般都在40.50左右一節課、、謝謝
⑥ 數學高一上學期重點知識點(大綱)
高一上學期的數學內容並不多,但是難度不低。難度並不在於知識點的深度和綜合能力,而在於從初中相對具體形象的數學學習一下進入高中抽象的,與生活似乎關系不大的學習,很多同學表現出非常大不適應。因此,如果覺得高一數學「難」,復習的重點,應當放在分析為什麼自己覺得學習過的知識點「難」上。
難點一:抽象函數
F規則的含義雖然看起來簡單,但如果理解不深刻,對於後面的解題有很大的影響。解決抽象函數難點的思路主要有這樣兩條:
(1) 將抽象函數的內容與具體函數的性質結合起來。抽象函數作為理解函數的一個上位的要求,對於所有的具體函數都具有指導意義。高一學習的指數,對數和冪三種函數的具體性質,都是抽象函數性質在具體函數中的表現。函數的定義域,值域,單調性,奇偶性,這些內容既是抽象函數的核心內容,又是具體函數具體性質的表現。結合起來記憶,效果更好。
(2) 所有和抽象函數相關的綜合問題,一定首先想辦法將抽象函數的條件化為具體條件,轉化的方法,就是利用抽象函數的性質。很多綜合題中都會出現抽象函數的條件,對於這種題目,首先要解決的就是將這些條件中的f去掉。比如f(a)<f(b),保留f,無論a與b如何簡單,不利用單調性條件去掉f,問題都解決不了。
難點二:三角函數
這一部分的重點是一定要從初中銳角三角函數的定義中跳出來。在教學中,我注意到有些學生仍然在遇到三角函數題目的時候畫直角三角形協助理解,這是十分危險的,也是我們所不提倡的。三角函數的定義在引入了實數角和弧度制之後,已經發生了革命性的變化,sinA中的A不一定是一個銳角,也不一定是一個鈍角,而是一個實數——弧度制的角。有了這樣一個思維上的飛躍,三角函數就不再是三角形的一個附屬產品(初中三角函數很多時候依附於相似三角形),而是一個具有獨立意義的函數表現形式。
既然三角函數作為一種函數意義的理解,那麼,它的知識結構就可以完全和函數一章聯系起來,函數的精髓,就在於圖象,有了圖象,就有了所有的性質。對於三角函數,除了圖象,單位圓作為輔助手段,也是非常有效——就好像配方在二次函數中應用廣泛是一個道理。
三角恆等變形部分,並無太多訣竅,從教學中可以看出,學生聽懂公式都不難,應用起來比較熟練的都是那些做題比較多的同學。題目做到一定程度,其實很容易發現,高一考察的三角恆等只有不多的幾種題型,在課程與復習中,我們也會注重給學生總結三角恆等變形的「統一論」,把握住降次,輔助角和萬能公式這些關鍵方法,一般的三角恆等迎刃而解。關鍵是,一定要多做題。
難點三:向量部分
這部分其實是這學期最簡單的部分。簡單的原因是,以前從來沒有學過,初次接觸,考試不會太難。這部分的復習也最為輕松——圍繞向量的幾何表示,代數表示和坐標表示理解向量的各種運演算法則。
難點四:綜合題型
壓軸題基本上,都是以函數一章作為最核心的知識載體,中間摻雜向量和三角的運算。解決這樣的題目,方法幾乎是固定的,那就是首先利用抽象函數性質,將帶有f的條件化為不帶有f的條件,然後利用三角與向量的運算化簡或證明。非壓軸題出題方法可能更自由,但是綜合性往往沒有太強,仍然屬於各個板塊內的綜合。
⑦ 高一上學期數學上完幾本書
一般情況下,都會教完兩本,因為高中數學理科有11本書,文科有9本,一般老師都會在高二把所有書講完,留高三一年來復習,所以應該會教完兩本!
⑧ 高一數學 上學期結課 學到哪 高一 上學期 新課標 都講了哪些內容
這根據各學校的情況不同,選的是不同的課本,比如其他學校可能講的是必修一和必修二,主要內容為 集合、函數、空間幾何、直線與圓;我們學校這個學期就是講的必修一和必修四,主要內容為 集合,函數,三角函數以及空間向量和三角恆等變換.
⑨ 高一上學期數學重點知識點有哪些
高一上學期數學重點知識點有如下:
一、圓錐曲線的方程
1、橢圓:+=1(a>b>0)或+=1(a>b>0)(其中,a2=b2+c2)。
2、雙曲線:-=1(a>0,b>0)或-=1(a>0,b>0)(其中,c2=a2+b2)。
3、拋物線:y2=±2px(p>0),x2=±2py(p>0)。
二、函數奇偶性
1、如果對於函數定義域內的任意一個x,都有f(-x)=-f(x),那麼函數f(x)就叫做奇函數。
2、如果對於函數定義域內的任意一個x,都有f(x)=f(-x),那麼函數f(x)就叫做偶函數。
三、求函數值域的方法
1、直接法:從自變數x的范圍出發,推出y=f(x)的取值范圍,適合於簡單的復合函數。
2、換元法:利用換元法將函數轉化為二次函數求值域,適合根式內外皆為一次式。
四、二次函數的零點
1、△>0,方程有兩不等實根,二次函數的圖象與軸有兩個交點,二次函數有兩個零點。
2、△=0,方程有兩相等實根(二重根),二次函數的圖象與軸有一個交點,二次函數有一個二重零點或二階零點。
3、△<0,方程無實根,二次函數的圖象與軸無交點,二次函數無零點。
五、求函數定義域的主要依據
1、分式的分母不為零。
2、偶次方根的被開方數不小於零,零取零次方沒有意義。
3、對數函數的真數必須大於零。
⑩ 請問高一數學都學些什麼內容
必修一:集合,函數,指數函數和對數函數,函數應用
必修二:立體幾何初步,解析幾何初步
不過我是學了必修一然後學必修四的,學平面向量再學立幾和解幾~