導航:首頁 > 數字科學 > 數學基於什麼理論

數學基於什麼理論

發布時間:2022-12-06 19:58:29

㈠ 數學的基礎理論有哪些

1 、「數與代數」領域中主要是最基本的數、式、方程(及不等式)和函數的內容.
⑴在顧及知識的縱向邏輯結構的前提下,突出重點,適當精簡整合.
⑵螺旋上升地呈現重要的概念和思想,不斷深化對它們的認識,例如:使方程和函數交替出現,即按一次方程「組」,一次函數,二次方程,二次函數的順序螺旋上升.
⑶聯系實際,體現知識的形成和應用過程,突出建立數學模型的思想.
2 、「空間與圖形」的內容包括了「圖形的認識」「圖形與變換」「圖形與坐標」「圖形與推理」等.⑴加強數形結合思想的滲透,體現各部分知識之間的橫向聯系.⑵循序漸進地培養推理能力,做好由實驗幾何到論證幾何的過渡.對於推理能力的培養,按照「說點兒理」「說理」簡單推理「符號表示推理」等不同層次分階段逐步加深地安排.⑶從感性到理性,從靜到動提高對圖形的認識能力.
3 、「統計與概率」的內容.⑴側重於統計和概率中蘊涵的基本思想.⑵注重實際發揮案例的典型.⑶注意與前面各段銜接、持續地發展提高.
4 、「實踐與綜合應用」的內容與前三個領域有密切聯系,又具有綜合性.「實踐與綜合應用」不作為獨立的一塊內容,而是與最接近的知識內容相結合,以「課題學習」「數學活動」等多種形式分散地編排於各章之中,使實踐與應用能以多種形式進行,化整為零,經常化和生活化.

數學課題研究理論依據有哪些

一、學生的數學學習過程研究 1、有效運用學生的學習起點實踐研究 研究內容:什麼是學生的學習起點,在數學教學中學習起點有哪些不同的類型研究,如何尋找與有效運用學生的學習起點研究. 2、關注數學習困難生的實踐研究 研究內容:對數學概念掌握、計算技能或或問題解決能力較弱的學習困難學生的個案研究,如何對學生進行針對性的輔導研究,關於「兩極分化」現象的成因與對策研究. 3、小學數學課前基礎調查的作業設計研究 4、學生數學學習過程的優化研究.

㈢ 數學是研究什麼的科學

數學是研究數量、結構、變化、空間以及信息等概念的一門學科,從某種角度看屬於形式科學的一種。數學家和哲學家對數學的確切范圍和定義有一系列的看法。

在人類歷史發展和社會生活中,數學也發揮著不可替代的作用,也是學習和研究現代科學技術必不可少的基本工具。

數學的基本特徵是:

1、高度的抽象性和嚴密的邏輯性。

2、應用的廣泛性與描述的精確性。

數學是各門科學和技術的語言和工具,數學的概念、公式和理論都已滲透在其他學科的教科書和研究文獻中。

許許多多數學方法都已被寫成軟體,有的數學軟體作為商品在出售,有的則被製成晶元裝置在幾億台電腦以及各種先進設備之中,成為產品高科技含量的核心。

3、研究對象的多樣性與內部的統一性。

數學是一個「有機的」整體,它像一個龐大的、多層次的、不斷生長的、無限延伸的網路。高層次的網路是由低層次網路和結點組成的,後者是各種概念、命題和定理。

各層次的網路和結點之間是用嚴密的邏輯連接起來的。這種連接是客觀事物內在邏輯的反映。

(3)數學基於什麼理論擴展閱讀

有關數學定義的名言:

1、數學是上帝描述自然的符號。——黑格爾數學是一切知識中的最高形式。——柏拉圖

2、自然界的書是用數學的語言寫成的。——伽利略數學的本質在於它的自由。——康托爾

3、宇宙之大,粒子之微,火箭之速,化工之巧,地球之變,生物之謎,日用之繁,無處不用數學。——華羅庚

4、數學是研究抽象結構的理論。——布爾巴基學派

5、數學是知識的工具,亦是其它知識工具的泉源。——笛卡爾用一,從無,可生萬物。——萊布尼茲

6、數學家們都試圖在這一天發現素數序列的一些秩序,我們有理由相信這是一個謎,人類的心靈永遠無法滲入。——歐拉數學是科學之王。——高斯

7、數學是符號邏輯。——羅素音樂能激發或撫慰情懷,繪畫使人賞心悅目,詩歌能動人心弦,哲學使人獲得智慧,科學可改善物質生活,但數學能給予以上的一切。——克萊因

8、萬物皆數。——畢達哥拉斯幾何無王者之道。——歐幾里德

㈣ 數學思維的理論依據

數學就是一種對模式的研究,或者一種模式化(抽象化)的過程。數學將具體的問題普遍化、抽象化為一個純粹的數學問題,而對這個抽象的問題的解決又具有實際的意義,有助於解決實際的問題。因此,數學具有兩重屬性,即抽象性和現實性(或應用性)。兒童學習數學,須從他們生活中熟悉的具體事物入手,逐步開始數學的抽象過程。僅僅停留於具體問題的解決不能稱為數學,而不從具體的事物出發或者脫離具體實踐來教授抽象的數學運算,更是違背了數學的本質屬性。幼兒處在邏輯思維萌發及初步發展的時期,也是數學概念初步形成的時期。數學知識具有高度的邏輯性和抽象性,學習數學可以鍛煉幼兒思維的邏輯性和抽象性。

㈤ 數學的基礎理論有哪些

1 、「數與代數」領域中主要是最基本的數、式、方程(及不等式)和函數的內容。

⑴在顧及知識的縱向邏輯結構的前提下,突出重點,適當精簡整合。

⑵螺旋上升地呈現重要的概念和思想,不斷深化對它們的認識,例如:使方程和函數交替出現,即按一次方程「組」,一次函數,二次方程,二次函數的順序螺旋上升。

⑶聯系實際,體現知識的形成和應用過程,突出建立數學模型的思想。

2 、「空間與圖形」的內容包括了「圖形的認識」「圖形與變換」「圖形與坐標」「圖形與推理」等。⑴加強數形結合思想的滲透,體現各部分知識之間的橫向聯系。⑵循序漸進地培養推理能力,做好由實驗幾何到論證幾何的過渡。對於推理能力的培養,按照「說點兒理」「說理」簡單推理「符號表示推理」等不同層次分階段逐步加深地安排。⑶從感性到理性,從靜到動提高對圖形的認識能力。

3 、「統計與概率」的內容。⑴側重於統計和概率中蘊涵的基本思想。⑵注重實際發揮案例的典型。⑶注意與前面各段銜接、持續地發展提高。

4 、「實踐與綜合應用」的內容與前三個領域有密切聯系,又具有綜合性。「實踐與綜合應用」不作為獨立的一塊內容,而是與最接近的知識內容相結合,以「課題學習」「數學活動」等多種形式分散地編排於各章之中,使實踐與應用能以多種形式進行,化整為零,經常化和生活化。

㈥ 小學數學教學理論有哪些

1、皮亞傑的認知發展理論
2、布魯納的認知發現學習理論
3、奧蘇伯爾的認知同化學習理論
4、當今建構主義學習理論

㈦ 數學思想有哪些

常用的數學思想(數學中的四大思想)

  1. 函數與方程的思想 用變數和函數來思考問題的方法就是函數思想,函數思想是函數概念、圖象和性質等知識更高層次的提煉和概括,是在知識和方法反復學習中抽象出的帶有觀念的指導方法。深刻理解函數的圖象和性質是應用函數思想解題的基礎,運用方程思想解題可歸納為三個步驟:①將所面臨的問題轉化為方程問題;②解這個方程或討論這個方程,得出相關的結論;③將所得出的結論再返回到原問題中去。

  2. 數形結合思想 在中學數學里,我們不可能把「數」和「形」完全孤立地割裂開,也就是說,代數問題可以幾何化,幾何問題也可以代數化,「數」和「形」在一定條件下可以相互轉化、相互滲透。

  3. 分類討論思想 在數學中,我們常常需要根據研究對象性質的差異。分各種不同情況予以考察,這是一種重要數學思想方法和重要的解題策略,引起分類討論的因素較多,歸納起來主要有以下幾個方面:
    (1)由數學概念、性質、定理、公式的限制條件引起的討論;
    (2)由數學變形所需要的限制條件所引起的分類討論;
    (3)由於圖形的不確定性引起的討論;
    (4)由於題目含有字母而引起的討論。分類討論的解題步驟一般是:(1)確定討論的對象以及被討論對象的全體;(2)合理分類,統一標准,做到既無遺漏又無重復;(3)逐步討論,分級進行;(4)歸納總結作出整個題目的結論。

  4. 等價轉化思想 等價轉化是指同一命題的等價形式.可以通過變數問題的條件和結論,或通過適當的代換轉化問題的形式,或利用互為逆否命題的等價關系來實現。常用的轉化策略有:已知與未知的轉化;正向與反向的轉化;數與形的轉化;一般於特殊的轉化;復雜與簡單的轉化。

閱讀全文

與數學基於什麼理論相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:739
乙酸乙酯化學式怎麼算 瀏覽:1404
沈陽初中的數學是什麼版本的 瀏覽:1350
華為手機家人共享如何查看地理位置 瀏覽:1042
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:884
數學c什麼意思是什麼意思是什麼 瀏覽:1408
中考初中地理如何補 瀏覽:1299
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:701
數學奧數卡怎麼辦 瀏覽:1387
如何回答地理是什麼 瀏覽:1023
win7如何刪除電腦文件瀏覽歷史 瀏覽:1055
大學物理實驗干什麼用的到 瀏覽:1484
二年級上冊數學框框怎麼填 瀏覽:1699
西安瑞禧生物科技有限公司怎麼樣 瀏覽:973
武大的分析化學怎麼樣 瀏覽:1248
ige電化學發光偏高怎麼辦 瀏覽:1337
學而思初中英語和語文怎麼樣 瀏覽:1650
下列哪個水飛薊素化學結構 瀏覽:1423
化學理學哪些專業好 瀏覽:1486
數學中的棱的意思是什麼 瀏覽:1057