A. 如何有效銜接中小學數學
1)立足於新課標和教材,尊重學生實際,實行分層次教學。
在教學中,應從學生實際出發,採用「低起點、小梯度、多訓練、分層次」的方法,將教學目標分解成若干遞進層次逐層落實。在速度上,適度加快教學節奏,以適應初中數學的快節奏教學;在知識導入上,多由實例和已知引入;在知識落實上,先落實「死」課本,後變通延伸用活課本;在難點知識講解上,從學生理解和掌握的實際出發,對教材作必要層次處理和知識鋪墊,並對知識的理解要點和應用注意點作必要總結及舉例說明。
(2)重視新舊知識的聯系與區別,建立知識網路。
中小學數學有很多銜接知識點,如有理數、三角形等,到初中,它們有的加深了,有的研究范圍擴大了,有些在小學成立的結論到初中可能不成立。因此,在講授新知識時,我們小學教師不要把內容講得太死,可以適度說明這些內容到初中學習時是有所變化的。
(3) 重視培養學生自我反思自我總結的良好習慣,提高學習的自覺性。
小學數學的概括性不如初中數學強,題目靈活多變,只靠課上聽懂是不夠的。所以我在教學中要求學生認真總結歸納,要求學生應具備善於自我反思和自我總結的能力。在單元結束時,幫助學生進行自我章節小結;在解題後,積極引導學生反思:思解題思路和步驟,思一題多解和一題多變,特別是用方程來解。由此培養學生善於進行自我反思和自我總結的習慣,擴大知識和方法的應用范圍,提高學習效率。
B. 初中數學與小學數學如何銜接
初一《代數》教材,涉及數、式、方程和不等式,這些內容與小學數學中的算術數、簡易方程、算術應用題等知識有關,但初一數學內容比小學內容更為豐富,抽象,復雜,在教學方法上也不盡相同;而小學學生的數學學習習慣和學習方法與中學生應有的學習習慣也不盡一致,因此,在教學過程中必須注意中小學數學的銜接.
一、內容上的銜接1.算術數與有理數
小學數學是在算術數中研究問題的,而中學數學一開始就有有理數,因此,從算術數過渡到有理數是一大轉折,為此,須抓住以下幾點:(1)講清楚具有相反意義的量,是引入負數的關鍵.
又如,珠穆朗瑪峰的海拔高度和吐魯番盆地的海拔高度是具有相反意義的量等等,在教學中可以多舉一些例子,讓學生了解為了區別具有相反意義的量必須引入一種新的數——負數.(2)逐步加深對有理數的認識
首先,讓學生清楚地認識到有理數與算術數的根本區別,有理數是由兩部分組成:符號部分和數字部分(即算術數).這樣,對有理數的概念的理解,運算的掌握就簡便多了.
其次,讓學生清楚有理數的分類與小學的算術數相比只是多了負整數和負分數.(3)有理數的運算,其實是由兩部分組成:小學學習過的運算加上中學學習過的「符號」確定,只要特別注意符號的確定,那麼有理數的運算就不成為難點了.如:(-2)+(-4)先確定符號為「-」再把數字部分相加即可,
即(-2)+(-4)=-(2+4)=-62.數與代數式
從小學數學的特殊的、具體的數到中學的一般的、抽象的代數式,這是數學思維上的一次飛躍,因此,在教學時,要逐步引導學生過好這一關.(1)用字母表示數的必要性
以學生在小學學過的用字母表示數的例子,如:加法交換律a+b=b+a;乘法交換律ab=ba及一些公式如速度公式v=s/t.正方形周長、面積公式l=4a,
s=a2等,說明由字母表示數能簡明、扼要地表達數量之間的關系.可以更方便地研究和解決問題.(2)加深對字母a的認識許多學生由於對字母a表示數的意義理解不透,經常錯誤地認為-a一定是負數,因此,在教學上必須幫助學生理解a的含義,知道a可能是負數,而-a不一定是負數等問題.
首先讓學生弄清楚符號「-」的三種作用.①運算符號,如5-3表示5減3,2-4表示2減4;②性質符號,如-1表示負1,
5+(-3)表示5加上負3;③在某個數前面加上「-」號,表示該數的相反數,如-3表示3的相反數,-(-3)表示-3的相反數,-a表示a的相反數.然後再說明a表示有理數,可以是正數,可以是負數,亦可以是零.即包括符號和數字,這樣,學生才能真正理解a
,-a所包含的意義.(3)加強數學語言的訓練及列代數式的訓練如:a是正數表示為a>0,a是負數表示為a<0
,某數a的2倍表示為2a等.3.算術解法與代數解法
在小學,解應用題採用算術解法,而中學需用代數解法(列方程).算術解法是把未知量放在特殊地位,設法通過已知量求出未知量;而代數解法是把所求的量與已知量放在平等的地位,找出各量之間的等量關系,建立方程而求出未知量.另外,算術解法較強調套類型,而代數解法則重視靈活運用知識,培養分析問題和解決問題的能力,這是思維方法上的一大轉折.但學生開始往往習慣於用算術解法,而對用代數解法不適應,不知道如何找相等關系.因此,在教學中必須做好這方面的銜接,讓學生明白有些問題用算術解法是不方使的,最好用代數解法,只要找出相等關系,用等式表示出來就列出了方程,再利用解方程的方法,就可以求出未知數的值.
二.教法上的銜接
初一學生的思維方式仍保留著小學生那種以直觀、形象思維為主的特點.因此,在教法上應注意研究小學的數學教學方法,吸取其中優點,針對初一學生的特點,改進教學方法.1.查缺補漏,搭好階梯,注意新舊知識的銜接
初一《代數》第一章「代數初步知識」是以小學數學中的代數知識為基礎的.從用字母表示數一直到簡易方程,在小學高年級數學課中佔有相當大的比重,是對小學數學中的代數知識的比較系統的歸納與復習,但本章內容又是從初中代數學習的客觀需要出發的,不是小學知識的簡單重復.因此,在教學中應注意發揮本章承上啟下的作用,搞好新舊知識的銜接.2.從具體到抽象,特殊到一般,因材施教,改進教法.(1)循序漸進學生進入中學後,需逐步發展抽象思維能力.但初一新生在小學聽慣了詳盡、細致、形象的講解,如果剛一進入中學就遇到「急轉彎」往往很不適應.因此,教學過程中,不能一下子講得過多、過快、過於抽象、過於概括,而仍要盡量地採用一些實物教具,讓學生看得清楚,聽得明白,逐步向圖形的直觀、語言的直觀和文字的直觀過渡,最後向抽象思維過渡.
例如:講授相反數的概念可採用如下順序②再觀察這幾組數字本身的特點:只有符號不同.③引導學生自行得出相反數的概念.(2)前後對比在初一代數的教學過程,恰當地運用對比,能使學生加快理解和掌握新知識.
例如,在學習一元一次不等式和一元一次不等式組時,由於初一的不等式知識體系的安排大體與方程知識體系的安排相同.因此,在教學中,可把不等式與方程的意義、性質,不等式的解集與方程的解以及解一元一次不等式與解一元一次方程等對比著進行講授,既說明它們的相同點,更要指出它們的不同點,揭示各自的特殊性.這樣,有助於學生盡快掌握不等式的有關知識,同時避免與方程的有關知識混淆.(3)開拓思路初一學生考慮問題較單純,不善於進行全面深入的思考,對一個問題的認識,往往注意了這一面,忽視了另一面,只看到現象,看不到本質.這種思維上的不成熟給科目成倍增加、知識內容明顯加深的初中階段的教學帶來了困難.因此,在教學中,要多給學生發表見解的機會,細心捉摸其思考問題的方法,分析其產生錯誤的原因,啟發學生遇到問題要認真分析,不要輕易下結論.
例如:學生往往誤認為2a>a
,理由很簡單:2個a顯然大於1個a
,忽視了a包含的意義,a表示有理數,可以是正數,負數或零,從而造成了錯誤.
三.學習習慣與學習方法的銜接1.繼續保持良好的學習方法和習慣
剛從小學升上初一,小學里的許多良好的學習方法和習慣應該繼續保持.如:上課坐姿端正,答題踴躍,聲音響亮,積極舉手發言等.2.指導科學的學習方法,培養良好的學習習慣
初一學生基於小學的學習習慣和方法,認為學數學就是做作業,多做練習,課本成了「習題集」.因此,在教學過程中,須逐步培養學生自學能力,指導學生預習、復習和小結,適當選讀課外讀物,培養興趣,開闊視野.
C. 如何做好小學初中數學的過渡及銜接
不少小學數學學霸到了初中成績都會遭遇「滑鐵盧」,究其原因還是因為初中 數學 學習 方法 和小學有很大的區別,小學屬於「填鴨式」 教育 ,1+1就是等於2,而到了初中知識層面更廣,更注重數學原理的學習,所以,原來的學習方法就不能適用初中生學習了,那麼如何做好小學初中數學的過渡及銜接呢?
如何做好小學初中數學的過渡及銜接
一、轉變學習習慣
小學生學數學有三種不同的類型:
1.記憶型:這種學生的學習方法是大量做題,然後記背做過的題,考試時靠記憶解題。這種學生用記憶代替思維,思維能力沒有得到有效的訓練和提升。當他們進入初中後,由於初中數學內容增多,難度明顯增大,難以理解也記不住,因此,這種學生很快就出現學習困難,成績一落千丈。
2.模仿型:這種學生的學習方法是模仿老師講的例題和做過的練習題,考試時用模仿類型題的方法解題。這種學生訓練出來的是模仿性思維,思維能力提升甚少,當他們升入高中後,由於高中的題型太多,千變萬化,他們已經很難模仿,學習很累,事倍功半,成績自然不理想。
3.思維型:這種學生的學習方法是通過思考、尋找知識與題目的聯系,通過做通做透一題,學會一片題。考試時活用知識解題,這種學生的思維能力得到有效的訓練,升入高中後,能夠做到舉一反三、融會貫通,這樣既能適應高中的學習,又能輕松考高分。
由此可知,小學升入初中後,不能再用記憶、模仿的 思維方式 學習,必須轉變學習習慣。
二、思維模式
小學升入初中後,由於初中數學知識明顯加寬,難度明顯加大,對學生思維能力的要求自然增強。這些能力主要包括以下六種:
① 理性思維 能力
② 逆向思維 能力
③ 多角度思維能力
④ 抽象問題的思維能力
⑤ 復雜問題的思維能力
⑥ 陌生問題的思維能力
學生如果不具備這些思維能力,學習肯定會受影響,輕者學習跟不上,重者會導致厭學。而這些思維,全部都可以通過訓練提升。
三、必須掌握的學習方法
有人認為,學好數學就是要認真聽課,認真做作業,大量做題,有錯必改,經常復習。就是要「頭懸梁,錐刺股」,要和疲勞頑強抵抗,用刻苦與之抗爭。對於這種做法,專家認為:「精神誠可貴,效果未必好」。因為學習本身是一門科學,講究技術、方法和技巧。真正學習好的學生,你會發現他不用怎麼花時間就可以學得很好。因此,小升初的學生必須開始掌握學習方法,主要包括以下幾個方面:
① 深入知識的本質,了解知識的聯系和規律,做到融會貫通;
② 做題時要一題多解、多解歸一、多題歸一,通過做題善於 總結 ,善於發現規律,總結規律;
③ 主動學習,超前思維,對於書本的例題,在老師未講之前提前思考,在老師講時與之對比,這樣可以大大提高效率。
四、做好小升初數學銜接
第一,從知識能做好小升初數學銜接學習的必要性力上來看,小學學得太「浮」(這是很普遍的現象),對知識沒有進行系統的整理和歸納(小學老師要負一定的責任)。如前所述,小學學習注重感性的形象思維,但是從初中開始,對數學邏輯嚴密性的要求就開始加強了。如北師大版 七年級數學 上冊的第二單元《有理數及其運算》和第三單元《字母表示數》,引入負數、數軸和字母後,分類討論的思想就隨之而來,很多時候答案不再唯一,這與小學的學習可以說是「天壤之別」。
另外,很多孩子在小學階段,數學的基本功——計算能力很欠缺,進入初一上第二單元《有理數及其運算》學習後,計算能力跟不上,作業和考試經常計算出錯,弄得自己焦頭爛額,信心大大受損,接下來的第三單元《字母表示數》對探究能力要求又高,學習起來也有一定難度,這兩單元學下來,信心徹底被摧垮,後面的學習情況可想而知。
第二,從學習習慣和方法上來看,小學生在答題規范和專題總結方面普遍欠缺很多。小學對答題規范要求很低,學奧數幾乎不要求,這就導致很多孩子很善於「湊答案」,但要寫出嚴密的推理過程卻「難如登天」。但是,從初中開始,對答題規范的要求「突然」提高很多,如果沒有提前的規范,學習成績自然會大受影響。
就學習方法而言,只是跟著老師走,完全不夠。自己一定要學會歸納、總結、改錯。這些方法小學完全可以不要,但是到了初中,不掌握這些方法,學習會比較吃力,相反,用好了這些方法,學習起來會「如魚得水」。
如何做好小學初中數學的過渡及銜接
想要學好初中數學,必須要圍繞著課前、課上和課後來展開,這些方法雖然有些老調重彈但是確實是一些好的方法,下面讓我們來具體地看看。
1、課前
課前需要預習,預習需要我們去把接下來要上的內容整體上看一遍,然後找出其中的重點與難點,以及自己無法很好理解的內容,分別做上不同的標記,以便在上課的時候針對自己的問題去認真聽課與重點理解。
2、課上
在上課的時候不太可能整節課都集中精神,這時候就更顯現出我們 課前預習 的重要性了。我們需要在上課的時候集中精神聽講預習中所遇到的重點與難點,盡量地在課堂上去理解吸收。同時也可以看看老師講的重點與自己課前預習所確定的重點是否一致。另外,對於老師重點講解的東西需要做下相應的筆記,以便之後復慣用。
3、課後
課後的復習一定要及時跟上,不僅當天要對學習的內容進行復習,在之後的幾天里也應該要花一定的時間去復習,同時可以跟上一些練習進行檢測與鞏固。如果復習的時候發現還有不明白的地方,一定要及時的去詢問老師或是其他同學,將其弄懂。
課前課上及課後三個步驟環環相扣,一定要把每一步都做到位,這樣初中階段就能打下很好的數學基礎,為今後更好的學習提供了良好的條件。
如何做好小學初中數學的過渡及銜接相關 文章 :
1. 小升初銜接,做到這些就夠了
2. 初一數學知識點歸納與學習方法
3. 各年級數學學習方法大全
4. 新初一數學課程介紹與學習方法指導
5. 小升初如何適應初中學習與生活
6. 如何提高初中數學的解題策略
7. 升學前的銜接班到底該不該上?看看別人怎麼說
8. 初中升高中數學銜接
9. 小學數學教學需要哪些改進措施
10. 初中生應該如何提高初中數學的解題策略
D. 如何做好小學,初中數學知識的銜接和過渡
初中與小學數學學習過渡問題的研究
一、初中與小學數學學習過渡期分析。
從小學到初中有一個過渡、適應、銜接問題。初一學生面臨著許多變化:心理生理的變化,數學知識的變化,學習方式的變化,學習過程的變化,思維方式的變化。
我們經常會看到這樣的現象:不少學生小學數學學得較好,一上初中就不行了。出現這種反差是因為初中與小學數學學習過渡銜接出了問題,原因是多方面的,比如,學習方式單一,學習過程簡單,邏輯思維能力欠缺等,具體表現在:僅僅接受知識而不主動學習;大量做題而不歸納總結;對問題不求甚解,只知其然而不知其所以然;不喜歡思考問題或懼怕探究問題等,以致這些學生從數學優秀生淪為學困生。
基於以上原因,我們確立研究課題《初中與小學數學學習過渡問題的研究》。
二、通過前期問卷調查,找到學生存在的問題。
在課題方案形成後,我們設計了課題調查問卷,抽取我校初2013屆8個班學生為研究對象,調查了解學生的學習方式、學習過程、學習習慣與思維方式的狀況。從調查統計結來看,存在著不少問題。比如:
(1)平時在學習新課之前能做到經常預習的人佔31.6%,這說明初一新生普遍沒有養成預習的習慣。
(2)非常願意參加課堂討論交流的人佔39.6%。這說明多數學生還還沒有合作學習的意識。
(3)對於學習過程中重要的知識點、典型方法、自己的心得體會能及時總結的人佔34.9%。這說明多數學生還沒有及時總結的習慣。
(4)解決數學問題時,不同的方法多的人數只有14.5% ;「解決數學問題時思維靈活」的人只有29.6%,這說明學生思維的發散性和靈活性普遍較弱。
三、針對調查問卷反映出的問題,我們制定了相應的方法與措施。
(1)理論聯系實際,將教育理念貫穿於日常的教學活動過程中。
(2)使課堂教學成為學生順利過渡的主陣地,將自主學習、合作學習、探究學習方式貫穿於課堂教學中,通過設置問題情境,引導學生學會思考,提高學生的探究能力,培養學生經驗型邏輯思維能力,提高學生思維的發散性和靈活性。
(3)有效地利用課余時間成為學生轉變學習方式的重要補充。在新課之後,我們往往設置1-2道思考題,這些問題源於課本內容,但又高於課本內容,具有一定的探究價值。鼓勵學生積極思考,合作探究,尋找解決問題的方法,發展思維能力。
(4)關注學生的非智力因素,著重培養學生嚴謹的治學態度,勤奮踏實的學風,知難而上的勇氣,堅忍不拔的毅力,勇於探究、敢於創新的精神等良好的個性品質。
(5)在實踐中,不斷反思和改進方法與策略,已達到預期的研究目標。
四、針對課題實施過程中學生出現的典型問題及時採取了對策。
問題:①許多學生不重視預習,認為預習可有可無;②學生整理錯題集存在應付走過場的現象;③不能堅持及時復習;④習慣於自主學習,不習慣合作學習,⑤不願把自己不懂的問題告訴他人;⑥缺乏知難而上的勇氣,遇到不會的問題,往往藉助別人或採取迴避的態度。
對策:①加強預習的指導和檢查,促使學生重視預習,學會預習;②定期檢查錯題集,對於出現的問題及時糾正。③通過有意識的設計錯題集中出現的易錯題進行課堂小測試,引導學生重視整理錯題集,夯實雙基,提高能力;④進一步引導學生及時復習,做到當天一復習,一周一復習,一月一復習;⑤鼓勵學生多提問題,多討論問題,不輕易放過一個小問題;⑥通過學習優秀生,培養學生良好的個性品質;⑦遇到暫時不會的難題,決不放棄,先獨立思考,若實在解決不了,再去問別人,直到解決問題為止。
五、課題實施後的成果
(一)學生的學習方式實現了可喜的轉變
自主學習、合作學習、探究學習方式已成為學生主要的學習方式。
在課堂教學中精心設置由易到難的問題串,給學生適當預留思考時間,鼓勵學生積極思考,獨立尋找解決問題的方法。從而引導學生自主學習、探究學習。在學生經過獨立思考,找到解決問題方法的基礎上,給學生充分交流自己方法的時間和機會,促進學生合作學習。
案例:《打折銷售的學問》
這節課課內共提出了八個問題,分為導入、探究、提升三個階段,讓學生了解打折銷售的方式,理解打折銷售中蘊含的數學方法,運用方程思想來解決打折銷售問題。學生經過啟發誘導、自主發現、研究討論、歸納總結,經歷了「觀察→類比→猜想→推理→應用」的探索過程,完成了「發現問題→探究知識→建構知識→解決問題」數學活動,使思維集中於問題的最近發展區,從而加快其形成完整的認知結構,提高應用知識解決問題的能力和思維能力。
這節課課後提出思考題:「個體服裝銷售通常高出進價的20%便可盈利,但個體商販常以高出進價的50%——100%標價。假如你准備買那件標價為150元的服裝,進價在什麼范圍,你應該在什麼范圍內還價?」提出問題後,我
E. 如何做好小學數學和初中數學銜接
小學生從小學升入初中之後,會面臨更大的學習壓力,再加上知識難度增大,很容易失去學習興趣。初中教師做好小學與初中的過渡和銜接,使學生在進入初中後能快速適應初中的學習非常重要。本文以初中數學為例,分析了做好小學初中數學教學的過渡和銜接的策略。
從小學升入初中是學生的生涯的一個非常重要的轉折點,在此特殊時期,多數學生會感覺不適應。與小學相比初中的科目增加了,教師隨之增加了。學生從小就適應了老師管理的模式,現在卻要在短時間內接受八九個老師的講課方式,會不知道怎麼辦,非常困惑。一些心理承受能力差的學生甚至會產生自卑心理變得消極怠慢,導致成績無法提高甚至出現下降的趨勢。數學是學習課程中很重要的一門課程,如何幫助剛升入初中的學生快速適應初中數學的教學方法,是非常重要的一個問題。下面我根據初中和小學數學的教學內容提出幾點建議,希望對剛升入初中的學生的數學學習有所幫助。
一、引導學生養成良好的學習習慣
經過小學多年的學習,學生必定形成了一些學習方法或者習慣,對於這些良好的習慣,應該繼續保持,比如上課時坐姿端正、回答問題積極、聲音響亮等,這些都是學生全面發展需要的,對數學課堂教學效率的提高非常重要。進入初中後,除了這些早已養成的良好習慣要保持之外,還需要養成新的學習數學的良好習慣。
1.養成課前預習、主動學習的習慣。
數學是一門比較抽象的學科,需要更多地思考。小學數學課比較簡單,因此,學生大多沒有養成課前預習的習慣。但是,初中數學與小學數學相比,學習難度和學生任務量都有了很大的增加,教師如果沒有引導學生養成預習的習慣,那麼學生就很難有效地預習,即使有預習的也是粗略地看一眼課本,不會思考,找不到問題所在,達不到預習的目的。所以,學生升入初中後,教師要盡早教給學生正確的預習方法,引導學生養成預習習慣,主動學習,激發學生學習數學的興趣。剛開始不要布置太多的預習題目,等學生都養成了自主學習習慣後,再布置一些題目,慢慢過渡到讓學生主動發現問題,讓數學學習變得更容易。
2.引導學生在課堂專心聽講,積極思考。
相比小學數學,初中數學的內容更多,難度更大。況且數學是連續性非常大的一門學科,在課堂上必須專心聽講,把握住課堂所講內容,如果課堂上開小差,一節課聽不懂,連鎖效應就會導致以後每節課都是糊里糊塗的,成績便會急速下降。另外,應當要求學生在專心聽講的同時還要學會思考,多問幾個問什麼,加深對數學定義的認識和理解。教師要在課堂上提出一些難度適中的問題,引導學生積極思考動腦,鍛煉學生的思維能力。
3.規范作業,強化訓練。
小學一般只重視結果而忽視過程,進入初中之後,教師必須進行嚴格訓練,讓學生重視過程,規范解題步驟。教師必須做到兩點,一是板書時要規范,以身作則,用自己規范的行為為學生樹立正面的榜樣;二是嚴格要求學生的作業,讓學生在思想上充分認識到規范解題步驟的重要性,及時糾正學生不規范的行為,讓學生養成好習慣。
4.及時復習,溫故知新。
數學是一門知識容量相當大的學科,數學公式、定理、原則相當多,再加上剛升入初中的學生智力因素發育尚未成熟,其他學科的學習任務繁重,很容易忘記之前學過的知識。教師應該注意在教學過程中隨時回顧之前學過的知識,通過不斷回顧,加深學生印象,培養學生自主復習的習慣。
二、教學要循序漸進
進入初中後,學生會學到很多比小學數學更抽象的內容,例如小學時只是簡單的平面幾何,而進入到初中之後則會涉及更抽象的立體幾何,還需要學生利用現有知識和圖形聯想,加入適當的輔助線解決各種問題,這對於剛升入初中的學生來說是很難接受的。
數學老師要學會循序漸進,利用層次教學的方式幫助學生逐漸適應當前的學習狀況。首先,教師要注意對學生講解即將學習到的知識和現在正在學習的知識的聯系與區別,為學生梳理和構建起基礎的知識點脈絡。講現有知識時適當回顧小學的知識,尤其對於一些容易混淆的知識點應當重點比較和區別。例如,如圖1所示,△ADE和△ABC的相似比是1:2,那麼兩者的面積比是多少?一些學生認為兩者的面積比就應當是兩者的相似比,混淆了兩者的含義。其次,在講解時,教師要注重講解某個定理或者公式是如何證明的,並對證明的過程進行詳細的分析和解釋,通過前人對現有知識的創造培養學生的創新精神,通過對現有知識的學習培養學生的創新能力。再次,教師應適當地對知識進行一定的擴展,例如在講到一道題時,教師可以利用不同的方法對此進行解答,在答案的設置上老師不應該設定所謂的「正確答案」,只要學生證明過程是正確的,那麼就應當承認學生的解題方式。第四,定期對學生進行考核,這種考核不僅幫助學生鞏固這段時間的學習內容,最重要的是幫助學生了解自己在這段時間內的優勢和劣勢,針對學生共同的問題,教師應當在接下來的時間內著重講解。另外,數學老師可以讓學生製作一些錯題本,專門記錄一些以往的錯誤並定期復習,從而使學生及時反思自己的錯誤,尤其是對於一些容易混淆的知識點,在老師講解之後,再次看錯題本會有更深刻的認知。這種隨時進行反思的行為能夠促使學生養成自我反思的習慣,並在反思中發現新的知識和新的解題思路。
三、兼顧小學內容
進入初中後,學生的學習任務和學習難度突然增加,很多學生難以適應。初中教師在教學過程中,往往只注重初中知識的講授,忽略了修補小學數學知識與初中數學知識之間的斷層。在講授初中知識時,教師應該注意兼顧小學的知識內容,以小學知識為導入,通過將小學數學與初中數學知識結合的方式,使學生更加容易接受初中知識。
四、結語
學生在升入初中後學習任務會加重,且所處的環境將變化,再加上升學的壓力,學生在短時間內要處理好各種問題是極大的挑戰。尤其是在數學學習上,無論是知識的難度還是過程的嚴密性要求都有了質的飛躍。初中數學教師應該認真分析有關問題,及時處理教學過程中出現的一些狀況,密切中小學數學之間的聯系,做好中小學數學教學方面的科研工作,進一步提高中小學數學教學質量,讓中小學更加持續健康地發展。
F. 如何做好小學和初中的銜接教學
七年級數學涉及的數、式和方程的內容與小學數學中學習的整數、簡易方程。應用題等知識有關,但是比小學內容更加豐富、抽象,在教學方法上應有所區別。
a.承上啟下,注重新舊知識的聯系;
b.從具體到抽象,從特殊到一般,因材施教,改進教學方法。
對於初中數學不管從教材的編寫還是課堂教學方式上都注重學生自主學習的方法和能力的培養,比如初中所學的概念、法則、公式和定理等,都是通過"觀察—思考一討論一探究一歸納"等過程。
小學生的思維以具體形象思維為主,到初中逐步向抽象思維過渡。小學生一方面需要藉助操作和直觀等手段理解和掌握數學概念、公式等知識;另一方面運用類比、歸納等簡單的演繹推理的方式。到初中後,隨著變數和演繹推理證明等知識的不斷提高,對於學生的抽象思維和判斷推理證明的能力的要求也不斷提高。