Ⅰ 數學的定義是什麼
定義
數學(漢語拼音:shù xué;希臘語:μαθηματικ;英語 : mathematics),源自於古希臘語的μθημα(máthēma),其有學習、學問、科學之意,以及另外還有個較狹隘且技術性的意義——「數學研究」。即使在其語源內,其形容詞意義和與學習有關的,亦會被用來指數學的。其在英語的復數形式,及在法語中的復數形式+es成mathématiques,可溯至拉丁文的中性復數(Mathematica),由西塞羅譯自希臘文復數 τα μαθηματικά(ta mathēmatiká)。以前中國古代把數學叫算術,又稱算學,最後才改為數學。
數學是利用符號語言研究數量、結構、變化以及空間模型等概念的一門學科。數學,作為人類思維的表達形式,反映了人們積極進取的意志、縝密周詳的邏輯推理及對完美境界的追求。雖然不同的傳統學派可以強調不同的側面,然而正是這些互相對立的力量的相互作用,以及它們綜合起來的努力,才構成了數學科學的生命力、可用性和它的崇高價值。
關於數學的定義,《中國大網路全書。數學卷》吳文俊先生是這樣寫的:「數學是研究現實世界中數量關系和空間形式的,簡單地說,是研究數和形的科學。這個定義來自恩格斯的《自然辯證法》:」數學是數量的科學,它從數量這個概念開始,它給這個概念下了一個殘缺不全的定義,然後再把未包含在定義中的數量的其他基本規定性當作公理從外部引了進來,在這以後,這些規定性就顯現為沒有證明過的東西,自然也就顯現為數學上不能證明的東西。數量的分析會指出這一切公理式的規定是數量的必然的規定。恩格斯再另一篇文章中說:「我們的幾何學是從空間關系出發,我們的算術和代數學是從數量出發。
我們讀大學時用的是蘇聯的教材,關於數學的定義就是吳文俊先生所寫的定義。
對於這個定義,有各種不同的理解。錢學森先生認為數學是社會科學和自然科學的基礎。哲學是社會科學和自然科學的概括。有人對數學來源於現實世界有不同的看法,比如「哥德巴赫猜想」來源於現實世界的哪一部分,很難講清楚。齊民友先生認為「數學的生長像竹子,根在大地,然後自己一節一節向上長,間或爆出新筍,長成新竹。若干年後,竹子開花,結成種子,重回大地。」
西方的數學家有不同的看法,例如林恩。斯蒂恩認為:「傳統上把數學描述為數與形的科學,但是隨著數學家開發的領域擴展到群論、統計學、最優化和控制理論之中,數學的歷史的邊界已經完全消失,同樣數學的應用的邊界也沒有了:它不再只是物理學和工程的語言,現在數學已經成為銀行、製造業、社會科學以及醫葯必可不少的工具,如果從這個廣泛的背景來觀察,我們看到數學不只是討論數與形,而且還討論各種類型的模式和次序。
我認為西方的數學家的看法是對的,恩格斯是總結19世紀數學給出的定義,用這個觀點看19世紀以前的數是可以的,但是數學發展了,現在的數學成果90%是20世紀做出的。
恩格斯說:數學的應用:在剛體力學中是絕對的,在氣體力學中是近似的。在液體力學就比較困難了;在物理學中是試驗性的和相對的;在化學中是最簡單的一次方程式;在生物學中等於零。「現在的情況完全不同,過幾天我會將些數學在物理學、生物學及社會科學中的應用。
西方對數學還把它看成是文化的一部分,對於這一點,很多人不認識,北京大學數學系早在1989年由鄧東皋、孫小禮、張祖貴主編《數學與文化》一書。編者精選了一批國內外著名的數學家以及研究數學的家哲學的文章,從各個側面來說明來說明數學在整個文化中的地位。1994年高考大綱也「要求考生具有一定的數學視野,認識數學的科學價值與人文價值,崇尚數學的理性精神,形成審慎的思維習慣,體會數學的美學意義。」
美國應用數學家、數學史家克萊因談到研究數學的動力有的是為了解決社會需要。但他認為進行數學創造的最主要趨勢力是對美的追求。他認為「如果美的組成和藝術作品的特徵包括洞察力和想像力,對稱性和比例、簡潔,以及精確地適應達到目的的手段,那麼數學就是一門具有其特有完美性的藝術。」就是說,數學是科學也是藝術。
Ⅱ 什麼是數學的作者簡介
R・柯朗(Richard Courant)是20世紀傑出的數學家,哥廷根學派重要成員。他生前是紐約大學數學系和數學科學研究院的主任,該研究院後被重命名為柯朗數學科學研究院。他寫的書《數學物理方程》為每一個物理學家所熟知;而他的《微積分學》已被認為是近代寫得最好的該學科的代表作。
H・羅賓Herbert Robbins)是新澤西拉特傑斯大學的數理統計教授。
I・斯圖爾特(Ian Stewart)是沃里克大學的數學教授,並且是《自然界中的數和上帝玩色子游戲嗎》一書的作者;他還在《科學美國人》雜志上主編《數學娛樂》專欄;他因使科學為大眾理解的傑出貢獻而在1995年獲得了皇家協會的米凱勒法拉第獎章。
Ⅲ 《什麼是數學對思想和方法的基本研究》pdf下載在線閱讀,求百度網盤雲資源
《什麼是數學》([美] R·柯朗 H·羅賓 著)電子書網盤下載免費在線閱讀
資源鏈接:
鏈接:https://pan..com/s/1-kz01lJ3zwDqiFW8oCH48A
書名:什麼是數學
作者:[美] R·柯朗 H·羅賓 著
譯者:左平
豆瓣評分:9.1
出版社:復旦大學出版社
出版年份:2005-5
頁數:584
內容簡介:《什麼是數學》既是為初學者也是為專家,既是為學生也是為教師,既是為哲學家也是為工程師而寫的。它是一本世界著名的數學科普讀物。書中搜集了許多經典的數學珍品,給出了數學世界的一組有趣的、深入淺出的圖畫,對整個數學領域中的基本概念與方法,做了精深而生動的闡述。
I·斯圖爾特增寫了新的一章,以新的觀點闡述了數學的最新進展,敘述了四色定理和費馬大定理的證明等。這些問題是在柯朗與羅賓寫書的年代尚未解決,但現在已被解決了的。
作者簡介:R·柯朗(Richard Courant)是20世紀傑出的數學家,哥廷根學派重要成員。他生前是紐約大學數學系和數學科學研究院的主任,該研究院後被重命名為柯朗數學科學研究院。他寫的書《數學物理方程》為每一個物理學家所熟知;而他的《微積分學》已被認為是近代寫得最好的該學科的代表作。
H·羅賓(Herbert Robbins)是新澤西拉特傑斯大學的數理統計教授。
I·斯圖爾特(Ian Stewart)是沃里克大學的數學教授,並且是《自然界中的數和上帝玩色子游戲嗎》一書的作者;他還在《科學美國人》雜志上主編《數學娛樂》專欄;他因使科學為大眾理解的傑出貢獻而在1995年獲得了皇家協會的米凱勒法拉第獎章。
Ⅳ 什麼是數學 對思想和方法的基本研究
這是一本參考書。
參考資料:網路
R·柯朗、H·羅賓編著的《什麼是數學?:對思想和方法的基本研究(第3版)》是世界著名的數學科普讀物,它搜集了許多經典的數學珍品,對整個數學領域中的基本概念與方法,做了精深而生動的闡述。無論是數學專業人士,或是願意作數學思考者都可以閱讀《什麼是數學?:對思想和方法的基本研究(第3版)》,特別對中學數學教師、大學生和高中生,都是一本極好的參考書。
希望對你有幫助。
Ⅳ 如何理解數學的兩重性
如何理解數學的兩重性
對數學的兩重性,我們應該有一個深入的了解.
一、數學是演繹的,也是歸納的
一般說來,人們認識客觀世界的方式有兩種,一是由認識個別的、特殊的事物,進而認識一般的事物,這種認識方法稱為歸納法.一是由認識一般的事物,過渡到認識特殊、個別的事物,這種認識方
法稱為演繹法.認識的深化,是在歸納和演繹的交替過程中實現的.歸納把對許多事物的特殊屬性的認識發展歸結為對於一類事物的共同屬性的認識.演繹把從歸納得出的一般結論作為依據,去研究其他個
別事物的特性.因此,歸納是演繹的基礎,而演繹是歸納的深化.
《幾何原本》是數學發展史上的第一座理論豐碑.歐幾里得(Euclid)將原有的數學知識進行梳理提煉,把理論的起點建立在人們的直覺上,找出少數最直觀的原始概念和公設、公理,藉助人類思維
的先進邏輯推理模式,逐條推演出以後的命題,採用演繹法的體系建構了平面幾何理論,從而確立了公理化思想,確立了演繹推理的範式.人們對數學演繹體系的推崇,表達了對科學理論方法的絕對信服
.數學從此步入發展的坦途.
公理體系使得數學具有鮮明的學科特點,清晰的邏輯起點,明確的概念,正確的判斷.是演繹推理使得數學內容條理清晰,基礎敦實,結論正確,因而顯示出巨大的力量.演繹可以引導歸納,當演繹
推理出現阻礙時,就是向歸納提出問題,促使歸納超越模糊、零散和殘缺.
然而,由邏輯演繹構築起的理論體系制約著思維的自由,因為體系裡面多是同語反復,只能環流,不能前進.這就是歐式幾何理論成為長期制約非歐幾何產生的藩籬的重要原因.由此看出,邏輯演繹
的主要功能不是發現新的結論,而是架構基本概念、基本運算和基本命題之間的必然聯系.邏輯演繹擅長的是檢驗這些聯系之間的途徑是否有效,卻難以確定通往正確方向的途徑,因為確定通往正確方向
的途徑是需要做出選擇的,而這恰恰是歸納法之所長.
Ⅵ 什麼是數學
數學源自於古希臘,是研究數量、結構、變化以及空間模型等概念的一門科學。透過抽象化和邏輯推理的使用,由計數、計算、量度和對物體形狀及運動的觀察中產生。數學的基本要素是:邏輯和直觀、分析和推理、共性和個性。
Ⅶ 數學的定義是什麼
數學的定義
定義1:
還是一百多年前,恩格斯給數學下的定義是「研究客觀世界的數量關系和空間形式的科學」,空間形式就是指的幾何學
源自: 高師幾何教學改革的設想 《楚雄師專學報》 2001年 陳萍
來源文章摘要:本文在反思師專幾何教學現狀的基礎上 ,提出改革幾何教學的一些建議
定義2:
數學定義是對數學發展的概括和總結.必然具有其階段性與局限性,不存在適合任何時期亘古不變的數學定義.3.現代數學時期(19世紀末以來)現代數學時期是以1873年康托爾(G·Cantor)建立集合論為起點
源自: 從「數學是什麼」談數學及數學教育 《零陵學院學報》 2004年 肖家洪
來源文章摘要: 數學是什麼?這是一個公認的難於回答的問題.1941年,美國數學家R·柯朗與H·羅賓斯合作寫了一本書,題目就是《數學是什麼》.該書緣何不以「什麼是數學」為題,我想二者是否有所區別,「數學是什麼」,
定義3:
恩格斯在《反杜林論》中,將數學定義為:「純數學的研究對象是客觀世界的空間形式與數量關系」.這在客觀上完整地概括了這一時期數學的對象和本質,因而被譽為「經典定義」
源自: 從「數學是什麼」談數學及數學教育 《零陵學院學報》 2004年 肖家洪
來源文章摘要: 數學是什麼?這是一個公認的難於回答的問題.1941年,美國數學家R·柯朗與H·羅賓斯合作寫了一本書,題目就是《數學是什麼》.該書緣何不以「什麼是數學」為題,我想二者是否有所區別,「數學是什麼」,
定義4:
他說,數學的定義是『』研究數量關系和空間形式的學科」.首先,它的表達形式簡潔、嚴謹,毫無紙漏和瑕疵.其次,數學的分支豐富多樣,為不同興趣的科學家提供了無限寬廣的可能性,具有廣裹之美
源自: 沉浸在奧妙王國的中國數學家 《瞭望》 2002年 浦樹柔
來源文章摘要:有些木訥,有些內向,總皺著眉頭思考玄奧晦澀的數學問題,走路沒准還會撞在電線桿上,這也許是許多人心中給「數學家」描繪的一幅「漫畫像」.數學真的離我們那麼遠嗎?數學家都那麼古怪可笑嗎?8月下旬在北京召開的國際數學家大會,將迎來4000多位來自世界各地的數學家,屆時人們可以一睹其群體風采.
定義5:
過去說的數學的定義是恩格斯在《自然辯證法》中提出來的他說數學是研究客觀世界的數量關系和空間形式的.恩格斯這個定義是19世紀提出來的隨著20世紀數學的發展很多東西用這個定義概括不了
源自: 數學的力量 《安徽科技》 2002年 丁石孫
定義6:
在邵雍看來先天之學是以「數」為其根本的所以他的學說又直稱為「數學」.與邵雍同時的道學家程領曾經風趣地說:「堯夫(邵雍)欲傳數學與某兄弟某兄弟那得功夫要學須是二十年功夫
源自: 道教燈儀與易學關系考論 《周易研究》 2000年 詹石窗
來源文章摘要:燈儀是道教儀式之中的重要品類.它的形成具有深遠的民俗學淵源和思想基礎.就理論角度來說,道教之燈似乃以傳統易學為結構框架.本文選擇了道教燈儀中的幾種要代表性的形式進行考察.作者通過文本的解讀與歷史追索,認為此類燈儀不僅貫穿著易學的象數法門,而且蘊含著深刻的易學義理觀念.
Ⅷ 數學是什麼什麼是數學
數學是研究數量、結構、變化、空間以及信息等概念的一門學科,從某種角度看屬於形式科學的一種。數學家和哲學家對數學的確切范圍和定義有一系列的看法。
數學定義的三個主要類型被稱為邏輯學家,直覺主義者和形式主義者,每個都反映了不同的哲學思想學派。都有嚴重的問題,沒有人普遍接受。
西方數學簡史
數學的演進大約可以看成是抽象化的持續發展,或是題材的延展。而東西方文化也採用了不同的角度,歐洲文明發展出來幾何學,而中國則發展出算術。
第一個被抽象化的概念大概是數字(中國的算籌),其對兩個蘋果及兩個橘子之間有某樣相同事物的認知是人類思想的一大突破。除了認知到如何去數實際物件的數量,史前的人類亦了解如何去數抽象概念的數量,如時間—日、季節和年。
算術(加減乘除)也自然而然地產生了。更進一步則需要寫作或其他可記錄數字的系統,如符木或於印加人使用的奇普。歷史上曾有過許多各異的記數系統。
古時,數學內的主要原理是為了研究天文,土地糧食作物的合理分配,稅務和貿易等相關的計算。數學也就是為了了解數字間的關系,為了測量土地,以及為了預測天文事件而形成的。這些需要可以簡單地被概括為數學對數量、結構、空間及時間方面的研究。
西歐從古希臘到16世紀經過文藝復興時代,初等代數、以及三角學等初等數學已大體完備。但尚未出現極限的概念。
17世紀在歐洲變數概念的產生,使人們開始研究變化中的量與量的互相關系和圖形間的互相變換。在經典力學的建立過程中,結合了幾何精密思想的微積分的方法被發明。隨著自然科學和技術的進一步發展,為研究數學基礎而產生的集合論和數理邏輯等領域也開始慢慢發。