1. 小學數學教學中常出現哪些問題
一、學生學習積極性的問題
現在的學生在課堂內外主動學習的能動性差,課堂上老師怎麼說,他就怎麼做,一旦離開了教室,知識就拋之腦後。這樣的學習不僅效率低,而且師生雙方都容易產生教學疲勞。或許有的教室懂得通過一些笑話、情境來提高學生的學習興趣,但這也不是長久之計,久而久之學生也會習慣,甚至專注於此而忘記學習本身。這樣的問題屢見不鮮,也是大多數老師所困惑的地方。
二、教師教學理念上的問題
許多老一輩教師,教了幾十年書,用的同一套方法,也許曾出過優秀的學生,但在如今,卻很有可能是行不通的。他們的教學手段相對陳舊,教學方式也很封閉,甚至仍有教師使用「填鴨式」教學,這與課改初衷相悖,也不適用於現代全面的素質教學。又或許有的教師是給出題目讓學生自己求答案,自己動腦解決問題,但從本質上來說,這並沒有改變一個思路上的桎梏,學生依然是按著老師的路子來走,這樣的教學是走不出發散性、創新性思維的。
三、學習過程中「會學不會做」的問題
老師講的時候明白,一旦換一種形式就不會做了,這樣的問題是普遍存在的。相信很多教師都面臨過這樣的煩心事,明明自己在課堂上講的十分清楚,卻偏偏有一些學生在課後練習的時候面對題目無從下筆。這樣的問題有學生反映過,也有老師專門思考過,但真正碰到的時候,往往就讓人感到棘手。究竟該如何讓學生既能聽懂,又能舉一反三,學會做題呢?
四、「優差生」分級造成的問題
有的班上同學成績好,有的成績差。分數的差異造成了學生之間分成兩派——「優等生」和「差等生」。這也是許多教師所默認的,認為「優等生」就該聚在一起討論學習,而「差等生」則隨便教教就算了,千萬不要影響了「優等生」。
這樣的分化是扭曲、錯誤的。新課改的教學實踐中,教師以及學生是一個整體,相互之間都不存在著優和差的隔閡,課堂上師生平等,教學上民主同思,才是能使教師與學生相互受益的良好氛圍。
2. 小學數學難題有那幾個
小學數學重點有三個(本人認為)
一個是代數,第二個平面幾何和立體幾何,第三個是統計與一些雜題。
代數主要包括方程,還有一些數學的基礎,例如什麼質數合數什麼的。特別是方程,要重點復習。
平面幾何主要包括小學學的基礎圖形,還要記住基礎概念,例如什麼三角形具有穩定形,還要背公式,最總要的一點是靈活靈用。
立體幾何,這是小學的難點,建議多做題。
統計等,這些都很簡單,可以簡要看一看
1、長方形的周長=(長+寬)×2 C=(a+b)×2
2、正方形的周長=邊長×4 C=4a
3、長方形的面積=長×寬 S=ab
4、正方形的面積=邊長×邊長 S=a.a= a
5、三角形的面積=底×高÷2 S=ah÷2
6、平行四邊形的面積=底×高 S=ah
7、梯形的面積=(上底+下底)×高÷2 S=(a+b)h÷2
8、直徑=半徑×2 d=2r 半徑=直徑÷2 r= d÷2
9、圓的周長=圓周率×直徑=圓周率×半徑×2 c=πd =2πr
10、圓的面積=圓周率×半徑×半徑 Ѕ=πr
11、長方體的表面積=(長×寬+長×高+寬×高)×2
12、長方體的體積 =長×寬×高 V =abh
13、正方體的表面積=棱長×棱長×6 S =6a
14、正方體的體積=棱長×棱長×棱長 V=a.a.a= a
15、圓柱的側面積=底面圓的周長×高 S=ch
16、圓柱的表面積=上下底面面積+側面積
S=2πr +2πrh=2π(d÷2) +2π(d÷2)h=2π(C÷2÷π) +Ch
17、圓柱的體積=底面積×高 V=Sh
V=πr h=π(d÷2) h=π(C÷2÷π) h
18、圓錐的體積=底面積×高÷3
V=Sh÷3=πr h÷3=π(d÷2) h÷3=π(C÷2÷π) h÷3
19、長方體(正方體、圓柱體)的體
1、 每份數×份數=總數 總數÷每份數=份數 總數÷份數=每份數
2、 1倍數×倍數=幾倍數 幾倍數÷1倍數=倍數 幾倍數÷倍數=1倍數
3、 速度×時間=路程 路程÷速度=時間 路程÷時間=速度
4、 單價×數量=總價 總價÷單價=數量 總價÷數量=單價
5、 工作效率×工作時間=工作總量 工作總量÷工作效率=工作時間 工作總量÷工作時間=工作效率
6、 加數+加數=和 和-一個加數=另一個加數
7、 被減數-減數=差 被減數-差=減數 差+減數=被減數
8、 因數×因數=積 積÷一個因數=另一個因數
9、 被除數÷除數=商 被除數÷商=除數 商×除數=被除數
小學數學圖形計算公式
1 、正方形 C周長 S面積 a邊長 周長=邊長×4 C=4a 面積=邊長×邊長 S=a×a
2 、正方體 V:體積 a:棱長 表面積=棱長×棱長×6 S表=a×a×6 體積=棱長×棱長×棱長 V=a×a×a
3 、長方形
C周長 S面積 a邊長
周長=(長+寬)×2
C=2(a+b)
面積=長×寬
S=ab
4 、長方體
V:體積 s:面積 a:長 b: 寬 h:高
(1)表面積(長×寬+長×高+寬×高)×2
S=2(ab+ah+bh)
(2)體積=長×寬×高
V=abh
5 三角形
s面積 a底 h高
面積=底×高÷2
s=ah÷2
三角形高=面積 ×2÷底
三角形底=面積 ×2÷高
6 平行四邊形
s面積 a底 h高
面積=底×高 s=ah
7 梯形
s面積 a上底 b下底 h高
面積=(上底+下底)×高÷2
s=(a+b)× h÷2
8 圓形
S面積 C周長 ∏ d=直徑 r=半徑
(1)周長=直徑×∏=2×∏×半徑
C=∏d=2∏r
(2)面積=半徑×半徑×∏
9 圓柱體
v:體積 h:高 s;底面積 r:底面半徑 c:底面周長
(1)側面積=底面周長×高
(2)表面積=側面積+底面積×2
(3)體積=底面積×高
(4)體積=側面積÷2×半徑
10 圓錐體
v:體積 h:高 s;底面積 r:底面半徑
體積=底面積×高÷3
總數÷總份數=平均數
和差問題
(和+差)÷2=大數 (和-差)÷2=小數
和倍問題
和÷(倍數-1)=小數
小數×倍數=大數
(或者 和-小數=大數)
差倍問題
差÷(倍數-1)=小數
小數×倍數=大數
(或 小數+差=大數)
植樹問題
1 非封閉線路上的植樹問題主要可分為以下三種情形:
⑴如果在非封閉線路的兩端都要植樹,那麼:
株數=段數+1=全長÷株距-1
全長=株距×(株數-1)
株距=全長÷(株數-1)
⑵如果在非封閉線路的一端要植樹,另一端不要植樹,那麼:
株數=段數=全長÷株距
全長=株距×株數
株距=全長÷株數
⑶如果在非封閉線路的兩端都不要植樹,那麼:
株數=段數-1=全長÷株距-1
全長=株距×(株數+1)
株距=全長÷(株數+1)
2 封閉線路上的植樹問題的數量關系如下
株數=段數=全長÷株距
全長=株距×株數
株距=全長÷株數
盈虧問題
(盈+虧)÷兩次分配量之差=參加分配的份數
(大盈-小盈)÷兩次分配量之差=參加分配的份數
(大虧-小虧)÷兩次分配量之差=參加分配的份數
相遇問題
相遇路程=速度和×相遇時間
相遇時間=相遇路程÷速度和
速度和=相遇路程÷相遇時間
追及問題
追及距離=速度差×追及時間
追及時間=追及距離÷速度差
速度差=追及距離÷追及時間
流水問題
順流速度=靜水速度+水流速度
逆流速度=靜水速度-水流速度
靜水速度=(順流速度+逆流速度)÷2
水流速度=(順流速度-逆流速度)÷2
濃度問題
溶質的重量+溶劑的重量=溶液的重量
溶質的重量÷溶液的重量×100%=濃度
溶液的重量×濃度=溶質的重量
溶質的重量÷濃度=溶液的重量
利潤與折扣問題
利潤=售出價-成本
利潤率=利潤÷成本×100%=(售出價÷成本-1)×100%
漲跌金額=本金×漲跌百分比
折扣=實際售價÷原售價×100%(折扣<1)
利息=本金×利率×時間
稅後利息=本金×利率×時間×(1-20%)
時間單位換算
1世紀=100年 1年=12月
大月(31天)有:1\3\5\7\8\10\12月
小月(30天)的有:4\6\9\11月
平年2月28天, 閏年2月29天
平年全年365天, 閏年全年366天
1日=24小時 1時=60分
1分=60秒 1時=3600秒積=底面積×高 V=Sh
希望能給你幫助! 謝謝....
3. 小學數學專題有哪些
一、如果按照教材分類可以分為如下四個專題
1、數與代數:數的認識、數的運算、常見的量、式與方程、探索規律
2、空間與圖形:圖形的認識、測 量、圖形和變換、圖形與位置
3、統計與概率:數據統計初步、不確定現象、可能性
4、實踐與綜合運用
二、如果按照思維訓練分類可以分為如下五個專題
1、計算:速算與巧算、數字謎、數列求和、數的拆分、定義新運算、比較和估算
2、應用題綜合:植樹問題、盈虧問題、行程問題 、平均數問題、濃度問題、牛吃草問題、年齡問題、經濟問題 、雞兔同籠問題、和差問題、和倍問題、工程問題、分數百分數問題、差倍問題
3、數論綜合:質數與合數、約數與倍數、數的整除性、數的進制、奇數與偶數、個位律、帶余除法
4、幾何圖形:直線型面積、曲線型面積 、立體幾何
5、幾個數學專題:智巧趣題、統籌優化、容斥原理、邏輯推理、計數問題 、構造與論證、抽屜原理、操作問題(策略、染色)
4. 小學數學研學問題有哪些
《新課改數學課程標准》提出要讓學生逐步學會從數學的角度提出、理解問題,並能綜合運用所學知識和技能解決問題,發展實際應用能力和提高創新精神。教師只有充分認識問題教學在實踐中的重要作用,通過創設合理的問題情境,培養學生的問題意識,鼓勵學生大膽質疑、科學探究,養成自主學習的習慣,才能達到小學數學新課改的目的和要求。
5. 小學數學解決問題有哪些
手腦並用是提高創新意識的有效方法。學生的實際動手能力是衡量人才的重要重要指標,是從小學會學習、學會生活的重要內容。在教學中,可以引導學生利用實際操作這項活動來幫助學生掌握知識,具有創造性、開拓性。符合國家關於活動課開設的目的和意義。有利於數學教學的輔助過程,有利於創新能力的培養。在教學活動中,教師要注重提供各種機會讓學生參與活動,使學生在參與過程中掌握方法,促進思維的發展。教學中,經常設置一些懸念性的問題,鼓勵學生探索,喚起學生創新意識,改變教師的主體。學生的創新潛能得到挖掘,逐步形成創新能力。
優化教學模式,深化創新意識培養:傳統意義上教學的幾個重要的環節一般是:導入新課—新授—鞏固練習—布置作業。經過多年的改進,形式雖然有變化,但實質卻沒有什麼改動。其實,課堂不必套用這個模式,對小學來說,一本正經的像對成人那樣傳授知識,未免太呆板了些。活動教學、游戲教學、發現教學、探究教學、數學建模教學、競賽教學,根據不同的教學內容,都是可以採取的。比如:導入這一環節,完全可以用昀新的教學詞彙—創設情境來表示和演繹,情境是教師和學生共同面對的,它必然會起到導入的作用,但更重要的是面對著一個問題,藉以引起學生的興趣,激發學生的求知慾望,培養尋求解決問題的不同方法的意識。再比如:新授這一環節,完全可以改成探索與討論,而鞏固環節可以換成實踐與反思等等,這些改變並不是換換詞語那樣簡單,更重要的是教學觀念的改變與教學方式的更新,通過這些改變增強學生的主動性,從而更好的提高學生創新意識。
3
小學數學方法二
動手操作的策略:例如:教學四年級下冊第五單元《三角形》中《三角形邊的關系》時,我讓學生自己探索任意三根小棒能否圍成三角形,先猜想,再讓學生動手操作試圍,驗證自己的猜想。實驗結果有所不同,這樣使學生在具體的操作過程中產生思維沖突,從而提出數學問題「為什麼有的能圍成,有的圍不成呢?」,有效地激發了學生進一步探究的慾望,在進一步的探索交流中得出結論,即較短兩條邊的和等於或小於第三邊時不能圍成三角形,只有較短兩邊的和大於第三邊時才能圍成三角形。
再如:教學《三角形的內角和》一課時,根據學生已有的知識經驗和生活經驗,課前有一部分學生就能說出三角形內角和是180°這一知識點。但是如何讓學生明白為什麼三角形的內角和是180°,而不是僅僅知道這個結論而已。教學中我引導學生通過量一量、算一算、剪一剪、拼一拼、折一折等一系列操作活動,找到了幾種驗證三角形內角和是180°的方法,學生通過動手操作,自主探究得出結論後,體驗到了成功的喜悅。還有我在教《梯形的面積》時,引導學生探究「怎樣計算梯形的面積?」這一問題時,我給學生提供了硬紙片的梯形學具,把實際操作策略的選擇權留給學生,學生將這個問題轉化為一個已知的問題進行推導研究。學生在自主探索實現操作策略的多樣化:有的學生將它剪為兩個三角形;有的通過割、補將它轉化為長方形;或者把兩個完全一樣的梯形拼成一個平行四邊形。這種開放性的操作策略,不僅有可能獲得問題解決,而且還能培養學生的創造性思維。
6. 常見的小學數學教學問題有哪些
小學數學教學問題提出及分析
我這幾年任教的是農村一年級的數學教學工作,小學生年齡小對提問概念比較陌生,對看圖提問的能力也偏差。
例如:在人教版一年級教學8加幾的計算後,有一節課是圖文應用題向文字敘述的應用題,貼圖,左邊有一群白兔和灰兔共10隻,其中白兔幾只,灰兔幾只,右邊一群,白兔幾,灰兔幾只,老師們:「請小朋友認真觀察,你能提出一個什麼數學問題?
學生接著思考、討論、匯報。
學生A:有白兔10隻。
學生B:有兩群兔子。
學生C:有灰兔5隻。
學生D:一共有多少只兔子。、、、、、、、
五花八門,但是有價值的問題學生很少能提到。
為什麼會這樣呢?
我從教十幾年了,我覺得有幾方面的原因:
1. 農村幼兒教育的水平偏差
一年級的小朋友到目前來說在小學中只學了四個多月,他們以前大部分的時間在幼兒園就讀,農村幼兒園條件不太好,對學生的學前教育有一定的影響,他們數學方面大部分學習的是簡單的加減計算,沒有深入去調動學生思維,我班62人,剛開學竟有22人不會減法計算,這給我們一年級的教師的教學帶來了很大困難。
2. 一年級學生大多數是留守孩缺少家庭指導
現在我們一年級的大部分學生的家長長年在外打工,由爺爺、奶奶帶,平時間的家庭作業基本上沒有家長進行指導,學校學習的時間是有限的,老師布置的作業在質量的方面上在打折扣,導致學生的各項數學能力下降。
3. 教師在教學中可能對學提出自己提出問題的這種意識沒有認識到位,農村的教育條件有一定的差距,對學生開發智力,引導學生自己提出問題——解決問題的能力的培養往往變成老師提問-----學生解決問題。
針對這一情況,我認為我們農村老師應改變這種狀況應做到下面幾點:
1. 平時間要多創設有趣的情境,讓學生自己有能力並主動提出問題,使學生有提出問題的意識。
2. 提問要有針對性和有價值,也就是不能文不對題的現象 。
3. 老師應蹲下身子與學生多溝通、多交流,創設一種寬松、和諧的課堂氣氛,讓他們不懼怕教師,大膽地質疑,大膽猜想,從而驗證猜想、探索數學知識。
4. 教師在設計練習時要有一些學生提問的練習題,從小讓他們從小就有提問題的意識,培養自主發現問題,分析問題、解決問題的能力。
7. 小學數學中有哪些問題是比較典型的難題
找規律的題,還有求面積,體積,變個方法,找個稀奇古怪的形狀,只要你能拼接,會計算,細心就好了..
相遇,相向問題.
濃度題.
8. 小學數學難題大全
小學數學公式大全一、小學數學幾何形體周長 面積 體積計算公式長方形的周長=(長+寬)×2 C=(a+b)×2 正方形的周長=邊長×4 C=4a 長方形的面積=長×寬 S=ab 正方形的面積=邊長×邊長 S=a.a= a 三角形的面積=底×高÷2 S=ah÷2 平行四邊形的面積=底×高 S=ah 梯形的面積=(上底+下底)×高÷2 S=(a+b)h÷2 直徑=半徑×2 d=2r 半徑=直徑÷2 r= d÷2 圓的周長=圓周率×直徑=圓周率×半徑×2 c=πd =2πr 圓的面積=圓周率×半徑×半徑三角形的面積=底×高÷2。 公式 S= a×h÷2 正方形的面積=邊長×邊長 公式 S= a×a 長方形的面積=長×寬 公式 S= a×b 平行四邊形的面積=底×高 公式 S= a×h 梯形的面積=(上底+下底)×高÷2 公式 S=(a+b)h÷2 內角和:三角形的內角和=180度。長方體的體積=長×寬×高 公式:V=abh 長方體(或正方體)的體積=底面積×高 公式:V=abh 正方體的體積=棱長×棱長×棱長 公式:V=aaa 圓的周長=直徑×π 公式:L=πd=2πr 圓的面積=半徑×半徑×π 公式:S=πr2 圓柱的表(側)面積:圓柱的表(側)面積等於底面的周長乘高。公式:S=ch=πdh=2πrh 圓柱的表面積:圓柱的表面積等於底面的周長乘高再加上兩頭的圓的面積。 公式:S=ch+2s=ch+2πr2 圓柱的體積:圓柱的體積等於底面積乘高。公式:V=Sh 圓錐的體積=1/3底面×積高。公式:V=1/3Sh 分數的加、減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。分數的乘法則:用分子的積做分子,用分母的積做分母。分數的除法則:除以一個數等於乘以這個數的倒數。二、單位換算(1)1公里=1千米 1千米=1000米 1米=10分米 1分米=10厘米 1厘米=10毫米(2)1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米(3)1立方米=1000立方分米 1立方分米=1000立方厘米 1立方厘米=1000立方毫米(4)1噸=1000千克 1千克= 1000克= 1公斤 = 2市斤(5)1公頃=10000平方米 1畝=666.666平方米(6)1升=1立方分米=1000毫升 1毫升=1立方厘米(7)1元=10角1角=10分1元=100分(8)1世紀=100年 1年=12月 大月(31天)有:1\3\5\7\8\10\12月 小月(30天)的有:4\6\9\11月平年2月28天, 閏年2月29天 平年全年365天, 閏年全年366天 1日=24小時 1時=60分 1分=60秒 1時=3600秒三、數量關系計算公式方面 1、每份數×份數=總數 總數÷每份數=份數總數÷份數=每份數 2、1倍數×倍數=幾倍數 幾倍數÷1倍數=倍數幾倍數÷倍數=1倍數 3、速度×時間=路程 路程÷速度=時間 路程÷時間=速度 4、單價×數量=總價 總價÷單價=數量 總價÷數量=單價 5、工作效率×工作時間=工作總量 工作總量÷工作效率=工作時間工作總量÷工作時間=工作效率 6、加數+加數=和 和-一個加數=另一個加數 7、被減數-減數=差 被減數-差=減數 差+減數=被減數 8、因數×因數=積 積÷一個因數=另一個因數 9、被除數÷除數=商 被除數÷商=除數 商×除數=被除數四、算術方面 1.加法交換律:兩數相加交換加數的位置,和不變。 2.加法結合律:三個數相加,先把前兩個數相加,或先把後兩個數相加,再同第三個數相加,和不變。 3.乘法交換律:兩數相乘,交換因數的位置,積不變。 4.乘法結合律:三個數相乘,先把前兩個數相乘,或先把後兩個數相乘,再和第三個數相乘,它們的積不變。 5.乘法分配律:兩個數的和同一個數相乘,可以把兩個加數分別同這個數相乘,再把兩個積相加,結果不變。如:(2+4)×5=2×5+4×5。 6.除法的性質:在除法里,被除數和除數同時擴大(或縮小)相同的倍數,商不變。0除以任何不是0的數都得0。 7.等式:等號左邊的數值與等號右邊的數值相等的式子叫做等式。等式的基本性質:等式兩邊同時乘以(或除以)一個相同的數,等式仍然成立。 8.方程式:含有未知數的等式叫方程式。 9.一元一次方程式:含有一個未知數,並且未知數的次 數是一次的等式叫做一元一次方程式。學會一元一次方程式的例法及計算。即例出代有χ的算式並計算。 10.分數:把單位「1」平均分成若干份,表示這樣的一份或幾分的數,叫做分數。 11.分數的加減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。 12.分數大小的比較:同分母的分數相比較,分子大的大,分子小的小。異分母的分數相比較,先通分然後再比較;若分子相同,分母大的反而小。 13.分數乘整數,用分數的分子和整數相乘的積作分子,分母不變。 14.分數乘分數,用分子相乘的積作分子,分母相乘的積作為分母。 15.分數除以整數(0除外),等於分數乘以這個整數的倒數。 16.真分數:分子比分母小的分數叫做真分數。 17.假分數:分子比分母大或者分子和分母相等的分數叫做假分數。假分數大於或等於1。 18.帶分數:把假分數寫成整數和真分數的形式,叫做帶分數。 19.分數的基本性質:分數的分子和分母同時乘以或除以同一個數(0除外),分數的大小不變。 20.一個數除以分數,等於這個數乘以分數的倒數。 21.甲數除以乙數(0除外),等於甲數乘以乙數的倒數。五、特殊問題和差問題的公式 (和+差)÷2=大數 (和-差)÷2=小數和倍問題和÷(倍數-1)=小數小數×倍數=大數 (或者 和-小數=大數) 差倍問題差÷(倍數-1)=小數小數×倍數=大數 (或 小數+差=大數) 植樹問題 1 非封閉線路上的植樹問題主要可分為以下三種情形: (1)如果在非封閉線路的兩端都要植樹,那麼: 株數=段數+1=全長÷株距-1 全長=株距×(株數-1) 株距=全長÷(株數-1) (2)如果在非封閉線路的一端要植樹,另一端不要植樹,那麼: 株數=段數=全長÷株距全長=株距×株數株距=全長÷株數(3)如果在非封閉線路的兩端都不要植樹,那麼: 株數=段數-1=全長÷株距-1 全長=株距×(株數+1) 株距=全長÷(株數+1) 2 封閉線路上的植樹問題的數量關系如下株數=段數=全長÷株距全長=株距×株數株距=全長÷株數盈虧問題 (盈+虧)÷兩次分配量之差=參加分配的份數 (大盈-小盈)÷兩次分配量之差=參加分配的份數 (大虧-小虧)÷兩次分配量之差=參加分配的份數相遇問題相遇路程=速度和×相遇時間相遇時間=相遇路程÷速度和速度和=相遇路程÷相遇時間追及問題追及距離=速度差×追及時間追及時間=追及距離÷速度差速度差=追及距離÷追及時間流水問題(1)一般公式: 順流速度=靜水速度+水流速度逆流速度=靜水速度-水流速度靜水速度=(順流速度+逆流速度)÷2 水流速度=(順流速度-逆流速度)÷2 (2)兩船相向航行的公式: 甲船順水速度+乙船逆水速度=甲船靜水速度+乙船靜水速度 (3)兩船同向航行的公式: 後(前)船靜水速度-前(後)船靜水速度=兩船距離縮小(拉大)速度濃度問題溶質的重量+溶劑的重量=溶液的重量溶質的重量÷溶液的重量×100%=濃度溶液的重量×濃度=溶質的重量溶質的重量÷濃度=溶液的重量利潤與折扣問題利潤=售出價-成本利潤率=利潤÷成本×100%=(售出價÷成本-1)×100% 漲跌金額=本金×漲跌百分比折扣=實際售價÷原售價×100%(折扣<1) 利息=本金×利率×時間稅後利息=本金×利率×時間×(1-5%) 工程問題 (1)一般公式: 工作效率×工作時間=工作總量 工作總量÷工作時間=工作效率 工作總量÷工作效率=工作時間 (2)用假設工作總量為「1」的方法解工程問題的公式: 1÷工作時間=單位時間內完成工作總量的幾分之幾 1÷單位時間能完成的幾分之幾=工作時間
9. 當前小學數學課堂中有哪些問題
存在的問題:
問題一:情境創設不當,缺少針對性
數學教學中,選擇恰當的數學素材,創設一個適合教學和兒童發展需要的情境,是非常重要的環節。據不完全統計,80%以上的課都是從生活中或創設情景引入,其中有很多精彩的案例,但有些也有牽強之感。
問題二:合作形式濫用,缺少實質性。
合作學習是新課標所倡導的學習方式。合作學習是學生的一種需要,一種發自內心的合作慾望,是確實有合作必要的選擇,而不是教師認為什麼時候合作就什麼時候合作。
問題三:教學方式呆板,缺少啟發性
有的數學課堂教學把傳統的"滿堂灌"變成"滿堂問"。「知不知」、「是不是」、「對不對」、「怎麼樣」、「好不好」、「還有嗎?」??之類的毫無啟發性的問題充斥課堂,一方面把整體性的教學內容肢解得支離破碎,從而大大降低了知識的智力價值;另一方面把對話變為問答,課堂上一問一答,形式呆板,表面上師生、生生在互動,實質上是用提問的方式去「灌」。學生很少提出自己的問題,思維仍在同一水平上重復,師生、生生沒有真正動起來。就像塗長順老師說的,由原來的「填鴨子」到現在的「問鴨子」了。
問題四:評價形式失真,缺少個性化
新課程提倡激勵性評價,因此在課堂上,經常聽到的是「啪,啪,表揚他!」「棒,棒,你真棒!」的表揚聲。