㈠ 考研數學三什麼內容不考
如曲率,解復雜的微分方程等內容不考。
考試內容:
1.微積分(函數、極限、連續、一元函數微積分學、多元函數微積分學、無窮級數、常微分方程與差分方程);
2.線性代數(行列式、矩陣、向量、線性方程組、矩陣的特徵值和特徵向量、二次型);
3.概率論與數理統計(隨機事件和概率、隨機變數及其概率分布、二維隨機變數及其概率分布、隨機變數的數字特徵、大數定律和中心極限定理、數理統計的基本概念、參數估計、假設檢驗)。
拓展資料
《考研數學三大綱》是考研數學的考試綱要,包括微積分、線性代數、概率論與數理統計。均要求理解概念,掌握表示法,會建立應用問題的函數關系。
網路-考研數學三大綱
㈡ 考研數學三哪些不需要看
2010年全國碩士研究生入學統一考試數學考試大綱--數學三
考試科目:微積分.線性代數.概率論與數理統計
考試形式和試卷結構
一、試卷滿分及考試時間
試卷滿分為150分,考試時間為180分鍾.
二、答題方式
答題方式為閉卷、筆試.
三、試卷內容結構
微積分 56%
線性代數 22%
概率論與數理統計 22%
四、試卷題型結構
試卷題型結構為:
單項選擇題選題 8小題,每題4分,共32分
填空題 6小題,每題4分,共24分
解答題(包括證明題) 9小題,共94分
微 積 分
一、函數、極限、連續
考試內容
函數的概念及表示法 函數的有界性.單調性.周期性和奇偶性 復合函數.反函數.分段函數和隱函數基本初等函數的性質及其圖形 初等函數 函數關系的建立
數列極限與函數極限的定義及其性質 函數的左極限和右極限 無窮小量和無窮大量的概念及其關系 無窮小量的性質及無窮小量的比較 極限的四則運算極限存在的兩個准則:單調有界准則和夾逼准則 兩個重要極限:
函數連續的概念函數間斷點的類型 初等函數的連續性 閉區間上連續函數的性質
考試要求
1.理解函數的概念,掌握函數的表示法,會建立應用問題的函數關系.
2.了解函數的有界性.單調性.周期性和奇偶性.
3.理解復合函數及分段函數的概念,了解反函數及隱函數的概念.
4.掌握基本初等函數的性質及其圖形,了解初等函數的概念.
5.了解數列極限和函數極限(包括左極限與右極限)的概念.
6.了解極限的性質與極限存在的兩個准則,掌握極限的四則運演算法則,掌握利用兩個重要極限求極限的方法.
7.理解無窮小的概念和基本性質.掌握無窮小量的比較方法.了解無窮大量的概念及其與無窮小量的關系.
8.理解函數連續性的概念(含左連續與右連續),會判別函數間斷點的類型.
9.了解連續函數的性質和初等函數的連續性,理解閉區間上連續函數的性質(有界性、最大值和最小值定理.介值定理),並會應用這些性質.
二、一元函數微分學
考試內容
導數和微分的概念 導數的幾何意義和經濟意義 函數的可導性與連續性之間的關系 平面曲線的切線與法線 導數和微分的四則運算 基本初等函數的導數 復合函數.反函數和隱函數的微分法 高階導數 一階微分形式的不變性 微分中值定理 洛必達(L'Hospital)法則 函數單調性的判別 函數的極值 函數圖形的凹凸性.拐點及漸近線 函數圖形的描繪 函數的最大值與最小值
考試要求
1.理解導數的概念及可導性與連續性之間的關系,了解導數的幾何意義與經濟意義(含邊際與彈性的概念),會求平面曲線的切線方程和法線方程.
2.掌握基本初等函數的導數公式.導數的四則運演算法則及復合函數的求導法則,會求分段函數的導數 會求反函數與隱函數的導數.
3.了解高階導數的概念,會求簡單函數的高階導數.
4.了解微分的概念,導數與微分之間的關系以及一階微分形式的不變性,會求函數的微分.
5.理解羅爾(Rolle)定理.拉格朗日( Lagrange)中值定理.了解泰勒定理.柯西(Cauchy)中值定理,掌握這四個定理的簡單應用.
6.會用洛必達法則求極限.
7.掌握函數單調性的判別方法,了解函數極值的概念,掌握函數極值、最大值和最小值的求法及其應用.
8.會用導數判斷函數圖形的凹凸性(註:在區間 內,設函數 具有二階導數.當 時, 的圖形是凹的;當 時, 的圖形是凸的),會求函數圖形的拐點和漸近線.
9.會描述簡單函數的圖形.
三、一元函數積分學
考試內容
原函數和不定積分的概念 不定積分的基本性質 基本積分公式 定積分的概念和基本性質 定積分中值定理 積分上限的函數及其導數 牛頓一萊布尼茨(Newton- Leibniz)公式 不定積分和定積分的換元積分法與分部積分法 反常(廣義)積分 定積分的應用
考試要求
1.理解原函數與不定積分的概念,掌握不定積分的基本性質和基本積分公式,掌握不定積分的換元積分法和分部積分法.
2.了解定積分的概念和基本性質,了解定積分中值定理,理解積分上限的函數並會求它的導數,掌握牛頓一萊布尼茨公式以及定積分的換元積分法和分部積分法.
3.會利用定積分計算平面圖形的面積.旋轉體的體積和函數的平均值,會利用定積分求解簡單的經濟應用問題.
4.了解反常積分的概念,會計算反常積分.
四、多元函數微積分學
考試內容
多元函數的概念 二元函數的幾何意義 二元函數的極限與連續的概念有界閉區域上二元連續函數的性質 多元函數偏導數的概念與計算 多元復合函數的求導法與隱函數求導法 二階偏導數全微分 多元函數的極值和條件極值.最大值和最小值 二重積分的概念.基本性質和計算 無界區域上簡單的反常二重積分
考試要求
1.了解多元函數的概念,了解二元函數的幾何意義.
2.了解二元函數的極限與連續的概念,了解有界閉區域上二元連續函數的性質.
3.了解多元函數偏導數與全微分的概念,會求多元復合函數一階、二階偏導數,會求全微分,會求多元隱函數的偏導數.
4.了解多元函數極值和條件極值的概念,掌握多元函數極值存在的必要條件,了解二元函數極值存在的充分條件,會求二元函數的極值,會用拉格朗日乘數法求條件極值,會求簡單多元函數的最大值和最小值,並會解決簡單的應用問題.
5.了解二重積分的概念與基本性質,掌握二重積分的計算方法(直角坐標.極坐標).了解無界區域上較簡單的反常二重積分並會計算.
五、無窮級數
考試內容
常數項級數收斂與發散的概念 收斂級數的和的概念 級數的基本性質與收斂的必要條件 幾何級數與 級數及其收斂性 正項級數收斂性的判別法 任意項級數的絕對收斂與條件收斂 交錯級數與萊布尼茨定理 冪級數及其收斂半徑.收斂區間(指開區間)和收斂域 冪級數的和函數 冪級數在其收斂區間內的基本性質 簡單冪級數的和函數的求法 初等函數的冪級數展開式
考試要求
1.了解級數的收斂與發散.收斂級數的和的概念.
2.了解級數的基本性質和級數收斂的必要條件,掌握幾何級數及 級數的收斂與發散的條件,掌握正項級數收斂性的比較判別法和比值判別法.
3.了解任意項級數絕對收斂與條件收斂的概念以及絕對收斂與收斂的關系,了解交錯級數的萊布尼茨判別法.
4.會求冪級數的收斂半徑、收斂區間及收斂域.
5.了解冪級數在其收斂區間內的基本性質(和函數的連續性、逐項求導和逐項積分),會求簡單冪級數在其收斂區間內的和函數.
6.了解 . . . 及 的麥克勞林(Maclaurin)展開式.
六、常微分方程與差分方程
考試內容
常微分方程的基本概念 變數可分離的微分方程 齊次微分方程 一階線性微分方程 線性微分方程解的性質及解的結構定理 二階常系數齊次線性微分方程及簡單的非齊次線性微分方程 差分與差分方程的概念 差分方程的通解與特解 一階常系數線性差分方程 微分方程的簡單應用
考試要求
1.了解微分方程及其階、解、通解、初始條件和特解等概念.
2.掌握變數可分離的微分方程.齊次微分方程和一階線性微分方程的求解方法.
3.會解二階常系數齊次線性微分方程.
4.了解線性微分方程解的性質及解的結構定理,會解自由項為多項式.指數函數.正弦函數.餘弦函數的二階常系數非齊次線性微分方程.
5.了解差分與差分方程及其通解與特解等概念.
6.了解一階常系數線性差分方程的求解方法.
7.會用微分方程求解簡單的經濟應用問題.
線 性 代 數
一、行列式
考試內容
行列式的概念和基本性質 行列式按行(列)展開定理
考試要求
1.了解行列式的概念,掌握行列式的性質.
2.會應用行列式的性質和行列式按行(列)展開定理計算行列式.
二、矩陣
考試內容
矩陣的概念 矩陣的線性運算 矩陣的乘法 方陣的冪 方陣乘積的行列式 矩陣的轉置 逆矩陣的概念和性質 矩陣可逆的充分必要條件 伴隨矩陣 矩陣的初等變換 初等矩陣 矩陣的秩 矩陣的等價 分塊矩陣及其運算
考試要求
1.理解矩陣的概念,了解單位矩陣、數量矩陣、對角矩陣、三角矩陣的定義及性質,了解對稱矩陣、反對稱矩陣及正交矩陣等的定義和性質.
2.掌握矩陣的線性運算、乘法、轉置以及它們的運算規律,了解方陣的冪與方陣乘積的行列式的性質.
3.理解逆矩陣的概念,掌握逆矩陣的性質以及矩陣可逆的充分必要條件,理解伴隨矩陣的概念,會用伴隨矩陣求逆矩陣.
4.了解矩陣的初等變換和初等矩陣及矩陣等價的概念,理解矩陣的秩的概念,掌握用初等變換求矩陣的逆矩陣和秩的方法.
5.了解分塊矩陣的概念,掌握分塊矩陣的運演算法則.
三、向量
考試內容
向量的概念 向量的線性組合與線性表示 向量組的線性相關與線性無關 向量組的極大線性無關組等價向量組 向量組的秩 向量組的秩與矩陣的秩之間的關系 向量的內積 線性無關向量組的正交規范化方法
考試要求
1.了解向量的概念,掌握向量的加法和數乘運演算法則.
2.理解向量的線性組合與線性表示、向量組線性相關、線性無關等概念,掌握向量組線性相關、線性無關的有關性質及判別法.
3.理解向量組的極大線性無關組的概念,會求向量組的極大線性無關組及秩.
4.理解向量組等價的概念,理解矩陣的秩與其行(列)向量組的秩之間的關系.
5.了解內積的概念.掌握線性無關向量組正交規范化的施密特(Schmidt)方法.
四、線性方程組
考試內容
線性方程組的克萊姆(Cramer)法則 線性方程組有解和無解的判定 齊次線性方程組的基礎解系和通解 非齊次線性方程組的解與相應的齊次線件方程組(導出組)的解之間的關系 非齊次線性方程組的通解
考試要求
1.會用克萊姆法則解線性方程組.
2.掌握非齊次線性方程組有解和無解的判定方法.
3.理解齊次線性方程組的基礎解系的概念,掌握齊次線性方程組的基礎解系和通解的求法.
4.理解非齊次線性方程組解的結構及通解的概念.
5.掌握用初等行變換求解線性方程組的方法.
五、矩陣的特徵值和特徵向量
考試內容
矩陣的特徵值和特徵向量的概念、性質 相似矩陣的概念及性質 矩陣可相似對角化的充分必要條件及相似對角矩陣 實對稱矩陣的特徵值和特徵向量及相似對角矩陣
考試要求
1.理解矩陣的特徵值、特徵向量的概念,掌握矩陣特徵值的性質,掌握求矩陣特徵值和特徵向量的方法.
2.理解矩陣相似的概念,掌握相似矩陣的性質,了解矩陣可相似對角化的充分必要條件,掌握將矩陣化為相似對角矩陣的方法.
3.掌握實對稱矩陣的特徵值和特徵向量的性質.
六、二次型
考試內容
二次型及其矩陣表示合同變換與合同矩陣 二次型的秩 慣性定理 二次型的標准形和規范形 用正交變換和配方法化二次型為標准形 二次型及其矩陣的正定性
考試要求
1.了解二次型的概念,會用矩陣形式表示二次型,了解合同變換與合同矩陣的概念.
2.了解二次型的秩的概念,了解二次型的標准形、規范形等概念,了解慣性定理,會用正交變換和配方法化二次型為標准形.
3.理解正定二次型.正定矩陣的概念,並掌握其判別法.
概率論與數理統計
一、隨機事件和概率
考試內容
隨機事件與樣本空間 事件的關系與運算 完備事件組 概率的概念 概率的基本性質 古典型概率 幾何型概率 條件概率 概率的基本公式 事件的獨立性 獨立重復試驗
考試要求
1.了解樣本空間(基本事件空間)的概念,理解隨機事件的概念,掌握事件的關系及運算.
2.理解概率、條件概率的概念,掌握概率的基本性質,會計算古典型概率和幾何型概率,掌握概率的加法公式、減法公式、乘法公式、全概率公式以及貝葉斯(Bayes)公式等.
3.理解事件的獨立性的概念,掌握用事件獨立性進行概率計算;理解獨立重復試驗的概念,掌握計算有關事件概率的方法.
二、隨機變數及其分布
考試內容
隨機變數 隨機變數的分布函數的概念及其性質 離散型隨機變數的概率分布 連續型隨機變數的概率密度常見隨機變數的分布 隨機變數函數的分布
考試要求
1.理解隨機變數的概念,理解分布函數
的概念及性質,會計算與隨機變數相聯系的事件的概率.
2.理解離散型隨機變數及其概率分布的概念,掌握0-1分布、二項分布 、幾何分布、超幾何分布、泊松(Poisson)分布 及其應用.
3.掌握泊松定理的結論和應用條件,會用泊松分布近似表示二項分布.
4.理解連續型隨機變數及其概率密度的概念,掌握均勻分布 、正態分布 、指數分布及其應用,其中參數為 的指數分布 的概率密度為
5.會求隨機變數函數的分布.
三、多維隨機變數及其分布
考試內容
多維隨機變數及其分布函數 二維離散型隨機變數的概率分布、邊緣分布和條件分布 二維連續型隨機變數的概率密度、邊緣概率密度和條件密度 隨機變數的獨立性和不相關性 常見二維隨機變數的分布 兩個及兩個以上隨機變數的函數的分布
考試要求
1.理解多維隨機變數的分布函數的概念和基本性質.
2.理解二維離散型隨機變數的概率分布和二維連續型隨機變數的概率密度、掌握二維隨機變數的邊緣分布和條件分布.
3.理解隨機變數的獨立性和不相關性的概念,掌握隨機變數相互獨立的條件,理解隨機變數的不相關性與獨立性的關系.
4.掌握二維均勻分布和二維正態分布 ,理解其中參數的概率意義.
5.會根據兩個隨機變數的聯合分布求其函數的分布,會根據多個相互獨立隨機變數的聯合分布求其函數的分布.
四、隨機變數的數字特徵
考試內容
隨機變數的數學期望(均值)、方差、標准差及其性質 隨機變數函數的數學期望切比雪夫(Chebyshev)不等式 矩、協方差、相關系數及其性質
考試要求
1.理解隨機變數數字特徵(數學期望、方差、標准差、矩、協方差、相關系數)的概念,會運用數字特徵的基本性質,並掌握常用分布的數字特徵.
2.會求隨機變數函數的數學期望.
3.了解切比雪夫不等式.
五、大數定律和中心極限定理
考試內容
切比雪夫大數定律 伯努利(Bernoulli)大數定律辛欽(Khinchine)大數定律 棣莫弗—拉普拉斯(De Moivre-Laplace)定理 列維—林德伯格(Levy-Lindberg)定理
考試要求
1.了解切比雪夫大數定律、伯努利大數定律和辛欽大數定律(獨立同分布隨機變數序列的大數定律).
2.了解棣莫弗—拉普拉斯中心極限定理(二項分布以正態分布為極限分布)、列維—林德伯格中心極限定理(獨立同分布隨機變數序列的中心極限定理),並會用相關定理近似計算有關隨機事件的概率.
六、數理統計的基本概念
考試內容
總體 個體 簡單隨機樣本 統計量 經驗分布函數樣本均值 樣本方差和樣本矩 分布 分布 分布 分位數 正態總體的常用抽樣分布
考試要求
1.了解總體、簡單隨機樣本、統計量、樣本均值、樣本方差及樣本矩的概念,其中樣本方差定義為
2.了解產生 變數、 變數和 變數的典型模式;了解標准正態分布、 分布、 分布和 分布得上側 分位數,會查相應的數值表.
3.掌握正態總體的樣本均值.樣本方差.樣本矩的抽樣分布.
4.了解經驗分布函數的概念和性質.
七、參數估計
考試內容
點估計的概念 估計量與估計值 矩估計法 最大似然估計法
考試要求
1.了解參數的點估計、估計量與估計值的概念.
2.掌握矩估計法(一階矩、二階矩)和最大似然估計法.
㈢ 考研數學三哪些不需要看
考研不考數學的專業一覽:
漢語言文學(文學
語言學
文字學
)
歷史
哲學
新聞學
傳播學
播音主持
采訪編輯(都屬新聞專業)
管理類方面(企業管理
金融管理
工商管理
要考數學;行政管理
看情況而定)
圖書管理學
勞動與社會保障
旅遊專業
(大部分不用考
看學校來定)
工業設計
服裝設計
裝潢設計(看學校而定)
園林設計(主要看農業學校而定)
藝術類(聲樂、美術、體育)
醫學類(看學校而定)
心理學(由學校而定
在應用心理學中
需要考統計學)
社會學
法律
生物科學(由學校而定)
英語(科技英語有的學校要考)
㈣ 考研數學三概率論教材哪幾章不用看
人大版的經濟數學類的概率是指定教材。
不過我勸你還是用浙大通用版本的,因為現在數一數二數三數四的差距已經越來越小了。
㈤ 數三教材是哪些不用看的
數學三包括高等數學、概率論和數理統計、線性代數。
數學三的教材版本很多,你可以選擇經濟數學《微積分》(吳傳生等 高等教育出版社);《線性代數》(吳傳生等 高等教育出版) ;《概率論與數理統計》(吳傳生等 高等教育出版社) 或《概率論與數理統計》(浙江大學盛驟等 高等教育出版社)。
或選擇高數:同濟五版或六版 ;概率:浙大版 ;線代:同濟版 。
參考書可考慮李永樂或陳文燈的系列。
㈥ 為什麼考研數學一數學二數學三的用書都是一樣的看高數三的話,不看那一部分
高等數學
數一數二數三考試要求
第一章函數與極限
第十節中的「一致連續性」不用看;
其它內容是數一數二數三公共部分
第二章導數與微分
第四節參數方程求導及相關變化率為數一,數二考試內容,數三不要求;
第五節的微分在近似中的應用不用看;其餘內容為數一數二數三公共部分。
第三章微分中值定理與導數的應用
第六節函數圖形的描繪,第八節方程的近似解都不用看;
第七節曲率為數一數二考試內容,數三不用看;
其餘內容為數一數二數三公共部分。
第四章 不定積分
第五節積分表的使用不看;
其餘內容為公共部分。
第五章 定積分
第五節 反常積分的審斂法都不用看;
其餘內容為數一數二數三公共部分。
第六章 定積分的應用
數三隻需要掌握第二節的前兩部分:平面圖形的面積和體積;
數一數二掌握本章全部內容。
第七章 微分方程
第一,二,三,四(線性方程),六,七,八為數一數二數三公共部分;
第五節為數一數二考試內容;
第四節的伯努利方程和第九節歐拉方程為數一考試內容。
第八章 空間解析幾何與向量代數
數二數三不考,數一考試內容。
第九章 多元函數微分法及其應用
第一,二,三,四,五,八節為數一數二數三公共部分;
第五節中的隱函數存在定理,第六、七節為數一考試內容;
第九、十節數一數二數三都不考。
第十章 重積分
二重積分,含參變數的積分為數一數二數三公共部分;
三重積分為數一考試內容,數二數三不考。
第十一章 曲線積分與曲面積分
本章為數一考試內容,數二數三不考
第十二章 無窮級數
本章內容數二不考;
前四節為數一數三公共部分;
第七、八節為數一考試內容;其餘內容不用看。
線性代數
數一數二數三考試要求
前五章
數一數二數三公共部分
第六章
本章第二,三節為數一考試內容,數二數三不考。
概率論與數理統計
數二不考,數一數三考試要求
前三章
數一數三公共部分
第四章 隨機變數的數字特徵
前三節為數一數三公共部分;
第四節的協方差矩陣不用看。
第五章 大數定律及中心極限定理
數一數三公共部分,了解
第六章 樣本及抽樣分布
第二節不用看;
其餘為數一數三公共部分。
第七章 參數估計
第一節為數一數三公共部分;
第二、六節不用看;
其餘為數一考試內容
第八章 假設檢驗
前三節為數一考試內容,其餘不用看,只需了解即可,考試很少考到。
這是14年數學大綱的要求,你要考的那一年數學大綱出來以後關注一下有沒有變動,一般是不會有變的。
㈦ 考研數學3哪些內容不用看
請參考最新考研數三大綱 這個最權威
數學三主要考高數、線性代數和概率與數理統計這三個方面;其中高數佔比56%、線性代數、概率和梳理統計都是佔比22%。
參考書目:
1.數學考試大綱
2.《高等數學》同濟六版(等):講解比較細致,例題難度適中,涉及內容廣泛,是現在高校中採用比較廣泛的教材,配套的輔導教材也很多。
3.《線性代數》同濟五版(等):輕薄短小,簡明易懂,適合基礎不好的學生。《線性代數》清華[微博]版:適合基礎比較的學生
4.《概率論與數理統計初步》浙大[微博]四版:基本的題型課後習題都有覆蓋。
5.歷年真題
6.常用輔導書:綜合類輔導全書、習題集、模擬題
㈧ 考數學三,請問同濟五版中哪些章節不需要看呢
一、函數、極限、連續
二、一元函數微分學
三、一元函數積分學
四、多元函數微積分學
五、無窮級數
六、常微分方程與差分方程
書第一章全看,涵蓋大綱第一章所有知識點。
書第二章全看,第三章只看前六節,基本涵蓋大綱第二章知識點。漏導數的經濟意義和函數圖形的漸近線兩個點,自己補齊。
書第四章全看,第五章全看,第六章看第一節和第二節一二(三不看),基本涵蓋大綱第三章知識點。其中第五章第五節雖然劃星號,但和無窮級數的判定相似,可以看。漏定積分的應用中關於簡單的經濟應用問題一個點,自己補齊。
書第八章看一,二,三,四,五,八節,第九章看第一節和第二節一二(三不看),基本涵蓋大綱第四章知識點。漏無界區域上簡單的反常二重積分這個點,自己補齊。
書第十一章看前四節,涵蓋大綱第五章所有知識點。
書第十二章看一,二,三,四,七,八,九節,勉強涵蓋大綱第六章知識點。漏差分與差分方程的概念,差分方程的通解與特解,一階常系數線性差分方程,微分方程的簡單應用四個點,自己補齊。
註:以上各章含極少量超綱點,對考研有益無害,但看無妨。
如果誰有第六版,也請核對一下。
㈨ 考研數學三的內容有哪些哪些章節可以不學
線面積分不用看,
重積分看到二重
微分方程看到二階
㈩ 考研數學三高數哪些章節不用看,哪位哥哥姐姐知道告訴的詳細點啊,別說看大綱哦,看的我稀里糊塗的,重賞
不看大綱怎麼清楚啊?大綱寫的很清楚啊
三重積分應該不考