⑴ 數學的根是什麼意思
「根」就是方程的解,求某方程的根就是求這個方程的解;
比如,方程3x=12的根是4
⑵ 數學中的根是啥,最好舉個例子哇
你好!
根是:定義在一元方程中的使方程左、右兩邊的值相等的未知數的取值。
例如:x+1=2,x=1就是方程的根
如果對你有幫助,望採納。
⑶ 數學里的 根 是什麼意思
您好!
「根」就是方程的解,求某方程的根就是求這個方程的解;
比如,方程3x=12的根是4;方程x+5=11的根是6;
⑷ 根的公式是什麼呢
根公式是由方程系數直接把根表示出來的數學計算公式。
標準式:ax²+bx+c=0(a≠0)。
求根公式:x=[-b±√(b²-4ac)]/2a。
一元二次ax^2 +bx+c=0可用求根公式x= 求解,它是由方程系數直接把根表示出來的公式。這個公式早在公元9世紀由中亞細亞的阿爾·花拉子模給出。
有關公式:
至於一元四次方程ax^4+bx^3+cx^2+dx+e=0求根公式由卡當的學生弗拉利找到了。
關於三次、四次方程的求根公式,因為要涉及復數概念,這里不介紹了。
一元三次、四次方程求根公式找到後,人們在努力尋找一元五次方程求根公式,三百年過去了,但沒有人成功,這些經過嘗試而沒有得到結果的人當中,不乏有大數學家。
後來年輕的挪威數學家阿貝爾於1824年所證實,n次方程(n≥5)沒有公式解。不過,對這個問題的研究,其實並沒結束,因為人們發現有些n次方程(n≥5)可有求根公式。
⑸ 數學求根公式是什麼
求根公式如下:
a為二次項系數,b為一次項系數,c是常數。
一元二次ax^2 +bx+c=0可用求根公式x= 求解,它是由方程系數直接把根表示出來的公式。這個公式早在公元9世紀由中亞細亞的阿爾·花拉子模給出。
拓展資料:
南宋數學家秦九韶至晚在1247 年就已經發現一元三次方程的求根公式,歐洲人在400 多年後才發現,但在中國的課本上這個公式仍是以那個歐洲人的名字來命名的。
一元三次方程ax^3 +bx^2 +cx+d=0的求根公式是1545年由義大利的卡當發表在《關於代數的大法》一書中,人們就把它叫做「卡當公式」。可是事實上,發現公式的人並不是卡當本從,而是塔塔利亞(Tartaglia N.,約 1499~1557).發現此公式。
⑹ 數學公式根號怎麼計算
從個位起向左每隔兩位為一節,若帶有小數從小數點起向右每隔兩位一節,用「,」號將各節分開; 2.求不大於左邊第一節數的完全平方數,為「商」; 3.從左邊第一節數里減去求得的商,在它們的差的右邊寫上第二節數作為第一個余數; 4.把商乘以20,試除第一個余數,所得的最大整數作試商(如果這個最大整數大於或等於10,就用9或8作試商); 5.用商乘以20加上試商再乘以試商。如果所得的積小於或等於余數,就把這個試商寫在商後面,作為新商;如果所得的積大於余數,就把試商逐次減小再試,直到積小於或等於余數為止; 6.用同樣的方法,繼續求。 上述筆算開方方法是我們大多數人上學時課本附錄給出的方法,實際中運算中太麻煩了。我們可以採取下面辦法,實際計算中不怕某一步算錯!!!而上面方法就不行。 比如136161這個數字,首先我們找到一個和136161的平方根比較接近的數,任選一個,比方說300到400間的任何一個數,這里選350,作為代表。 我們計算0.5*(350+136161/350)得到369.5 然後我們再計算0.5*(369.5+136161/369.5)得到369.0003,我們發現369.5和369.0003相差無幾,並且,369^2末尾數字為1。我們有理由斷定369^2=136161 一般來說能夠開方開的盡的,用上述方法算一兩次基本結果就出來了。再舉個例子:計算469225的平方根。首先我們發現600^2<469225<700^2,我們可以挑選650作為第一次計算的數。即算 0.5*(650+469225/650)得到685.9。而685附近只有685^2末尾數字是5,因此685^2=469225 對於那些開方開不盡的數,用這種方法算兩三次精度就很可觀了,一般達到小數點後好幾位。 實際中這種演算法也是計算機用於開方的演算法
⑺ 數學中的根是什麼
根的意思就是方程的解。
方程的根是使方程左、右兩邊相等的未知數的取值。一元二次方程根和解不同,根可以是重根,而解一定是不同的,一元二次方程如果有2個不同根,又稱有2個不同解。
⑻ 數學根號怎麼算
數學根號把根號下的數開平方。
根號是用來表示對一個數或一個代數式進行開方運算的符號。若aⁿ=b,那麼a是b開n次方的n次方根或a是b的1/n次方。開n次方手寫體和印刷體用表示,被開方的數或代數式寫在符號左方√ ̄的右邊和符號上方一橫部分的下方共同包圍的區域中,而且不能出界。
簡介
根號里帶一個數字(暫且稱它為a)指的是這個數字的正的平方根(稱之為b),即b的平方為a。自然數開根號,分幾種情況:首先為完全平方數,如4,1,16,9等等,即可直接得出b也為自然數,對應為2,1,4,3。其次為非完全平方數。
此時又分兩種情況:若此數a的因數有完全平方數c,則開出c,其餘部分仍留在根號中。若此數沒有完全平方因數,則全部留在根號中。
⑼ 根號怎麼算根號怎麼運算
根號加減乘除運演算法則是√a+√b=√b+√a,√a-√b=-(√b-√a),√a√b=√(ab),√a/√b=√(a/b)等等根號是一個數學符號。
一、二次根式的加減。
二次根式加減時,可以先將二次根式化成最簡二次根式,再將被開方數相同的二次根式進行合並。
注意:
1、二次根式的加減常分為兩大步驟進行,第一步化簡,第二步合並。
2、在合並前應注意要先判斷清楚它們中哪些二次根式的被開方數是相同的;在合並時類似於以前學過的合並同類項,只需將根號外的因式進行加減,被開方數和根指數不變。
二、二次根式的乘除。
二次根式相乘,等於被開方數的積的算術平方根。
二次根式相除,等於被開方數的商的算術平方根。
根號的書寫規范:
1、寫根號:
先在格子中間畫向右上角的短斜線,然後筆畫不斷畫右下中斜線,同樣筆畫不斷畫右上長斜線再在格子接近上方的地方根據自己的需要畫一條長度適中的橫線,不夠再補足。
2、寫被開方的數或式子:
被開方的數或代數式寫在符號左方v形部分的右邊和符號上方一橫部分的下方共同包圍的區域中,而且不能出界,若被開方的數或代數式過長,則上方一橫必須延長確保覆蓋下方的被開方數或代數式。
3、寫開方數或者式子:
開n次方的n寫在符號√ ̄的左邊,n=。
⑽ 數學根號怎麼算的,
具體演算法如下:
1、打開手機中的計算器,進入後,點擊左下角的按鈕進入高級計算的界面。如圖所示: