『壹』 數學是什麼符號
「+」用作加號,「-」用作減號等。
乘號曾經用過十幾種,現代數學通用兩種。一個是「×」,最早是英國數學家奧屈特1631年提出的;一個是「·」,最早是英國數學家赫銳奧特首創的。
德國數學家萊布尼茨認為:「×」號像拉丁字母「X」,可能引起混淆而加以反對,並贊成用「·」號(事實上點乘在某些情況下亦易與小數點相混淆)。後來他還提出用「∩「表示相乘。這個符號在現代已應用到集合論中了。
到了十八世紀,美國數學家歐德萊確定,把「×」作為乘號。他認為「×」是「+」的旋轉變形,是另一種表示增加的符號。
「÷」最初作為減號,在歐洲大陸長期流行。直到1631年英國數學家奧屈特用「:」表示除或比,另外有人用「-」(除線)表示除。後來瑞士數學家拉哈在他所著的《代數學》里,才根據群眾創造,正式將「÷」作為除號。
『貳』 在數學中/是什麼符號
在數學中/符號有很多意思,根據不同的情境,表達的意思也是不同的,具體如下:
1、除號
例如:32/4=8 表示32除以4等於8
2、分數符號
例如:1/2 表示表示二分之一
3、或者符合
例如:a/b表示 a或者b
互聯網中的斜杠「/」:
斜杠「/」是很常見的一個符號。它的位置在右 Shift 的左邊,不用按 Shift 就能夠輸入。
斜杠之所以占據那麼重要的地位,應該得益於操作系統(Unix、Dos)的流行。在命令行中,一個斜杠往往是表示著根目錄,也作為目錄與目錄之間的分割。
其實到了互聯網時代,除了 URL 中可能要用到斜杠外,其他地方很少見到它的身影,它並沒有隨著歷史而去。在編程中,經常用到「/」和「」。
.在程序中,有時我們會看到這樣的路徑寫法,"D:\Driver\Lan" 也就是兩個反斜杠來分隔路徑。事實上,上面這個路徑可以用 "D:/Driver/Lan" 來代替,不會出錯,寫成了"D:DriverLan"就可能會出現錯誤。
『叄』 高中數學符號有哪些
1、幾何符號:
幾何是研究空間結構及性質的一門學科。它是數學中最基本的研究內容之一,常見定理有勾股定理,歐拉定理,斯圖爾特定理等。
常用符號有:⊥(垂直)、 ∥(平行)、 ∠(角)、 ⌒ (弧)、⊙(圓)。
2、代數符號:
代數的研究對象不僅是數字,而是各種抽象化的結構。在其中我們只關心各種關系及其性質,而對於「數本身是什麼」這樣的問題並不關心。
常用符號有:∝(正比)、∧(邏輯和)、∨(邏輯或)、 ∫(積分)、 ≠ (不等於)、≤(小於等於)、 ≥(大於等於)、 ≈(約等於)、 ∞(無窮)。
3、運算符號:
運算符號是計算數學時所用的符號,計算符號有加號、減號、乘號、除號。
常用符號有:×(乘)、 ÷(除)、 √(根號)、 ±(加減)。
4、集合符號:
集合是指具有某種特定性質的具體的或抽象的對象匯總成的集體,這些對象稱為該集合的元素。一定范圍的,確定的,可以區別的事物,當作一個整體來看待,就叫做集合,簡稱集。
常用符號有:∪(並)、 ∩(交)、 ∈(屬於)。
5、特殊符號:
數學中常用某個特定的符號來表示某個元素。
常用符號有:∑(求和)、 π(圓周率)
6、希臘符號:
在數學中,希臘字母通常被用來表示常數、特殊函數和一些特定的變數。在數學領域,通常大寫與小寫的希臘字母所代表的意義都會有所分別,並且互不相關。
常用符號有:α (阿爾法)、β(貝塔)、 γ(伽馬)、 δ(代爾塔)、 ε(埃普西龍)、 ζ (澤塔)、η (誒塔)、θ (西塔)、ι (埃歐塔)、κ(堪帕)、 λ(蘭姆達)、 μ (謬)、ν
『肆』 數學中-是什麼符號
在中學數學中,常見的數學符號有以下六種:
一、數量符號如3/4,圓周率π;a,x等。
二、運算符號如加號(+),減號(-),乘號(×或·),除號(÷或-),比號(:)等。
三、關系符號如「=」是「等號」,讀作「等於」;「≈」或「=」是「約等號」讀作「約等於」;「≠」是「不等號」。讀作「不等於」;「>」是「大於符號」,讀作「大於」;「<」是「小干符號」,讀作「小於」;「∥」是「平行符號」,讀作「平行於」;「⊥」是「垂直符號」,讀作「垂直於」等。
四、結合符號 如小括弧( ),中括弧[ ],大括弧{ }。
五、性質符號 如正號(+)、負號(-),絕對值符號(||)。
六、簡寫符號 如三角形(△),圓(⊙),冪()等。
你看下把!數學中-是應該是減號!
你看下,明白沒?沒得話,我再解釋!
這里說實在的最主要的還是方法,方法掌握了,類似的問題都能解決了!
希望我的回答對你有幫助,祝你好運!像這樣的問題自己多嘗試下,下次才會的!
祝你學業進步!
『伍』 什麼是數學符號
數學符號一般有以下幾種:(1)數量符號:如 :i,2+ i,a,x,自然對數底e,圓周率 ∏.(2)運算符號:如加號(+),減號(-),乘號(×或·),除號(÷或/),兩個集合的並集(∪),交集(∩),根號( ),對數(log,lg,ln),比(∶),微分(d),積分(∫)等.(3)關系符號:如「=」是等號,「≈」或「 」是近似符號,「≠」是不等號,「>」是大於符號,「<」是小於符號,「 」表示變數變化的趨勢,「∽」是相似符號,「≌」是全等號,「‖」是平行符號,「⊥」是垂直符號,「∝」是正比例符號,「∈」是屬於符號等.(4)結合符號:如圓括弧「()」方括弧「[]」,花括弧「{}」括線「—」 (5)性質符號:如正號「+」,負號「-」,絕對值符號「‖」 (6)省略符號:如三角形(△),正弦(sin),X的函數(f(x)),極限(lim),因為(∵),所以(∴),總和(∑),連乘(∏),從N個元素中每次取出R個元素所有不同的組合數(C ),冪(aM),階乘(!)等.符號 意義 ∞ 無窮大 PI 圓周率 |x| 函數的絕對值 ∪ 集合並 ∩ 集合交 ≥ 大於等於 ≤ 小於等於 ≡ 恆等於或同餘 ln(x) 以e為底的對數 lg(x) 以10為底的對數 floor(x) 上取整函數 ceil(x) 下取整函數 x mod y 求余數 {x} 小數部分 x - floor(x) ∫f(x)δx 不定積分 ∫[a:b]f(x)δx a到b的定積分 P為真等於1否則等於0 ∑[1≤k≤n]f(k) 對n進行求和,可以拓廣至很多情況 如:∑[n is prime][n < 10]f(n) ∑∑[1≤i≤j≤n]n^2 lim f(x) (x->?) 求極限 f(z) f關於z的m階導函數 C(n:m) 組合數,n中取m P(n:m) 排列數 m|n m整除n m⊥n m與n互質 a∈ A a屬於集合A #A 集合A中的元素個數
『陸』 數學符號都表示什麼怎麼讀
運算符號:如加號(+),減號(-),乘號(×或·),除號(÷或/),兩個集合的並集(∪),交集(∩),根號(√ ̄),對數(log,lg,ln,lb),比(:),絕對值符號||,微分(d),積分(∫),閉合曲面(曲線)積分(∮)等。
關系符號:如「=」是等號,「≈」是近似符號(即約等於),「≠」是不等號,「>」是大於符號,「<」是小於符號。
「≥」是大於或等於符號(也可寫作「≮」,即不小於),「≤」是小於或等於符號(也可寫作「≯」,即不大於)。
「→」表示變數變化的趨勢,「∽」是相似符號,「≌」是全等號,「∥」是平行符號,「⊥」是垂直符號,「∝」是正比例符號(表示反比例時可以利用倒數關系),「∈」是屬於符號,「⊆」是包含於符號。
「⊇」是包含符號,「|」表示「能整除」(例如a|b表示「a能整除b」,而||b表示r是a恰能整除b的最大冪次),x,y等任何字母都可以代表未知數。
結合符號:如小括弧「()」,中括弧「[]」,大括弧「{}」,橫線「—」,比如。
性質符號:如正號「+」,負號「-」,正負號「」(以及與之對應使用的負正號「」)。
省略符號:如三角形(△),直角三角形(Rt△),正弦(sin)(見三角函數),雙曲正弦函數(sinh),x的函數(f(x)),極限(lim),角(∠),∵因為∴所以。
總和,連加:∑,求積,連乘:∏,從n個元素中取出r個元素所有不同的組合數(n元素的總個數;r參與選擇的元素個數),冪等。
排列組合符號:C組合數、A(或P)排列數、n元素的總個數、r參與選擇的元素個數、!階乘,如5!=5×4×3×2×1=120,規定0!=1、!!半階乘(又稱雙階乘)。
例如:7!!=7×5×3×1=105,10!!=10×8×6×4×2=3840。
離散數學符號:∀全稱量、∃存在量詞、├斷定符(公式在L中可證)、╞滿足符(公式在E上有效,公式在E上可滿足)、﹁命題的「非」運算。
如命題的否定為﹁p、∧命題的「合取」(「與」)運算、∨命題的「析取」(「或」,「可兼或」)運算、→命題的「條件」運算。
↔命題的「雙條件」運算的、p<=>q命題p與q的等價關系、p=>q命題p與q的蘊涵關系(p是q的充分條件,q是p的必要條件)、A*公式A的對偶公式,或表示A的數論倒數(此時亦可寫為)。
wff合式公式:iff當且僅當、↑命題的「與非」運算(「與非門」)、↓命題的「或非」運算(「或非門」)、□模態詞「必然」、◇模態詞「可能」、∅空集、∈屬於(如"A∈B",即「A屬於B」)、∉不屬於、P(A)集合A的冪集。
|A|集合A的點數、R²=R○R[R、=R、○R]關系R的「復合」、ℵAleph,阿列夫、⊆包含、⊂(或⫋)真包含、另外,還有相應的⊄,⊈,⊉等。
∪集合的並運算:U(P)表示P的領域、∩集合的交運算、-或集合的差運算、⊕集合的對稱差運算、〡限制、集合關於關系R的等價類。
A/R集合A上關於R的商集、[a]元素a產生的循環群、I環,理想、Z/(n)模n的同餘類集合、r(R)關系R的自反閉包。
s(R)關系R的對稱閉包、CP命題演繹的定理(CP規則)、EG存在推廣規則(存在量詞引入規則)、ES存在量詞特指規則(存在量詞消去規則)、UG全稱推廣規則(全稱量詞引入規則)、US全稱特指規則(全稱量詞消去規則)。
更多數學表達符號:
∞無窮大、π圓周率、|x|絕對值、∪並集、∩交集、≥大於等於、≤小於等於、≡恆等於或同餘、ln(x)以e為底的對數、lg(x)以10為底的對數、floor(x)上取整函數、ceil(x)下取整函數。
xmody求余數、x-floor(x)小數部分、∫f(x)dx不定積分、∫[a:b]f(x)dxa到b的定積分、f(x)函數f在自變數x處的值、sin(x)在自變數x處的正弦函數值、exp(x)在自變數x處的指數函數值,常被寫作ex、logba以b為底a的對數。
cosx在自變數x處餘弦函數的值、tanx其值等於sinx/cosx、cotx餘切函數的值或cosx/sinx、secx正割含數的值,其值等於1/cosx、cscx餘割函數的值,其值等於1/sinx、asinxy正弦函數反函數在x處的值,即x=siny。
acosxy餘弦函數反函數在x處的值,即x=cosy、atanxy正切函數反函數在x處的值,即x=tany、acotxy餘切函數反函數在x處的值,即x=coty、asecxy正割函數反函數在x處的值,即x=secy、acscxy餘割函數反函數在x處的值,即x=cscy。