㈠ 怎樣才能講好小學數學題,讓他們真正的愛上數學
讓我們給出一個解決症狀和根本原因的答案。學前班和高年級班工作。所以,請慢慢來。通過解決一個問題,你可以解決成千上萬個問題。不是每個人都能為三四年級的學生解答出這樣的數學題。這種數學題給初二的孩子。我相信這樣的老師應該有辦法讓初二的孩子普遍理解。否則就是違法亂紀。不建議知道怎麼給孩子出問題,怎麼指出孩子的問題,怎麼跟上,怎麼適當訓練。更不希望向沒有教師資格證的家長發問
在整個小學階段,孩子有兩個弱點:抽象思維能力和空間想像能力。解決辦法,我總結成一個通式:變無形為有形,然後一步一步引向無形;變抽象為具體,再一步步引向抽象。具體到題主說的題目,不同的老師可能有自己不同的解決方法,真正做到:二年級的人都知道,大家都會知道。遇到這種事,我會繞個大圈子,標本兼治。
㈡ 如何復習數學 知乎
考試之前最好放鬆,起碼你要留1~2個小時來玩耍,不然你會很緊張。我也是這樣才考上了好學校。
復習方法:
1.在課本里把該背下來的背下來,找一些題來做。
2.准備考試的時候老師都會發測試卷下來的,也就是以前考過的試卷。你就好好看看錯的地方,最好把錯的重新抄一遍。
3.在練習冊里找一些題目來做。
4.最好寫一些應用題,方程,列豎式。
5.好好看一看輔導書。
6.8點鍾你就痛快的玩一場,看電視,上網,PSP,QQ,MSN,電影游戲,想玩什麼就玩什麼。直到9:30就上傳睡覺。
不要害怕,緊張,要耐心,細心,認真,考試時間很長的。(我們數學老師的台詞)
在此,我祝你考個好成績,考得好,父母長輩和自己都高興,紅包還能得多一些!
㈢ 如何學好初中數學 知乎
基本功
計算,防止算錯丟分
提分項
刷題,熟悉題目套路加快做題速度
看題,考慮這道題花費的時間來決定是否跳過(防止後面的大分題做不完)
冷靜和耐心,學理科暴躁了就完了,起碼做完了再爆發
㈣ 數學方面的能力該怎麼培養 知乎
一、認清你的需要
為什麼需要學習數學,這是你首先需要想清楚的問題。數學學科子分類多、每一本數學書中都有許多定理和結論,需要花大量時間研究。而人的時間是寶貴的、有限的,所以你需要大體有一個目標和計劃,合理安排時間。
1.1 你的目標是精通數學、鑽研數學,以數學謀生,你可能立志掌握代數幾何,或者想精通前沿物理。那麼你需要打下堅實的現代代數、幾何以及分析基礎,你需要准備大量時間和精力,擁有堅定不移的決心。(要求:精通全部三級高等數學)
1.2 你的目標是能夠熟練運用高等數學,解決問題,掌握探索新應用領域的武器,你可能立志進入計算機視覺領域、經濟學領域或數據挖掘領域。那麼,你需要打下堅實的矩陣論、微積分以及概率統計基礎。(要求:精通第一級高等數學)
1.3 你的目標是想了解數學的樂趣,把學數學作為人生一大業余愛好。那麼,你需要打下堅實的線性代數、數學分析、拓撲學以及概率統計基礎,對你來說,體會學數學的樂趣是一個更重要的目標。(精通第一級高等數學,在第二級高等數學中暢游,嘗試接觸第三級高等數學)
二、給自己足夠的動力
學數學需要智力,更需要時間和精力。下面的幾個事實相大家都深有體會:
1. 凡是沒有用的東西,或者雖然有用,但是你用不到的東西,學得快忘得也快。不信你回憶一下你大一或者初一的基礎課,你還記的清楚嗎?
2. 凡是你不感興趣(或者感覺不到樂趣)的東西,你很難堅持完成它。很多人都有這樣的經歷,一本書,前三章看的很仔細,後面就囫圇吞棗,越看越快,反正既沒意思也沒用。
3. 小學數學是中學數學的基礎,中學數學是高中數學的基礎,高中數學是大學數學的基礎(你可以以此類推)。
因此,無論你的目標是什麼,搞數學、用數學、還是體會數學的樂趣、滿足自己從少年時就有的夢想。學有所樂、學有所用,永遠是維持你動力不衰退的兩個最主要的因素。
三、高等數學學什麼?
好了,來看看標准大學數學的科技樹:
一級:
線性代數(矩陣論),數學分析,近世代數(群環域),分別囊括了了幾何、分析和代數的基礎理論。別忘了還有概率論(建立在分析之上的一門基礎學科)。
二級:
有了這些基礎,接著是基礎的基礎、抽象和推廣:測度論(積分的基礎,當然也是概率論的基礎),拓撲學(有關集合、空間、幾何的一門極度重要的基礎學科),泛函分析(線性代數的推廣),復變函數(分析的推廣),常微分方程與偏微分方程(分析的推廣),數理統計和隨機過程(概率論的推廣),微分幾何(分析和幾何的結合)。
然後是一些小清新和應用學科:數值分析(演算法),密碼學,圖形學,資訊理論,時間序列,圖論等等。
三級:
再往上是研究生課題,往往是代數、幾何和分析要一起上:微分流形、代數幾何、隨機動力學等等。
這個科技樹的三級,和小學、初中、高中數學很相似,一層學不精通,下一層看天書。
四、如何學習
4.1 適量做題
千萬千萬千萬不要狂做題。玩過戰略對抗游戲的同學都知道,低級兵造幾個就行了,要攢錢出高級兵才能在後期取勝,低級兵不僅攻擊力低,還沒有好玩的魔法,它們存在的意義在於讓你有能力熬到後期。上面列舉了那麼多課程,你先花5年做完吉米諾維奇六本數學分析習題集,你就30歲了,後面的二級課程還沒開始學呢。因此,做一些課後習題,幫助你復習、思考、維持大腦運轉就行,要不斷地向後學。如果完全學不懂了,返回來做習題幫自己理清頭緒。
4.2 了解思想
數學的精髓不是做題的數量,而是掌握思想。每一個數學分支都有自己的主線思想和方法論,不同分支也有相互可供對比和借鑒的思維方式。留意它,模仿它,瑣碎的知識就串成了一條項鏈,你也就掌握了一門課。思想並不是讀一本教材就能輕易了解的,你要讀好幾本書,了解一些應用才能體會。舉兩個例子:
微積分的主線有這么幾條:認識到微觀和宏觀是有聯系的,微分用來刻畫事物如何變化,它把細節放大給你看,而積分用來刻畫事物的整體性質;微分和積分有時是描述一個現象的不同方式,這一點你在數學分析書中可能不容易發現,但是如果學點物理,就會發現麥克斯韋方程組同時有等價的微分形式和積分形式;積分變換能夠建立不同空間之間的的聯系,建立空間和空間邊界的聯系,這就是Stokes定理:,這個公式最遲要在微分流形中你才能一窺全貌。
矩陣是空間中線性變換的抽象,線性代數這門課的全部意義在於研究如何表達、化簡、分類空間線性變換運算元;SVD分解不僅在應用學科用有極為廣泛的亮相,也是你理解矩陣的有力工具;矩陣是有限維空間上的線性運算元,對"空間"的理解不僅能讓你重新認識矩陣,更為泛函分析的學習開了個好頭。
4.3 漸進式迂迴式學習,對比學習
很多時候,只讀一本書,可能由於作者在某處思維跳躍了一下,以後你就再也跟不上了。學習數學的一個訣竅,就是你同時拿到好幾本國際知名教材,相互對比著看,或者看完一本然後再看同一主題的另一本書,已經熟悉的內容跳過去,如果看不懂了,停下來思考或者做做習題,還是不懂則往後退一退,從能看懂的部分向前推進,當你看的多了,就會發現一個東西出現在很多地方,對它的理解就加深了。舉兩個例子:
外微分這個東西,國內有的數學分析書里可能不介紹,我第一次遇到是在彭家貴的《微分幾何》里,覺得這是個方便巧妙的工具;後來讀卓里奇的《數學分析》和Rudin的《數學分析原理》,都講了這個東西,可見在西方外微分是一個基礎知識。你要讀懂它,可能要首先理解矩陣,明白行列式恰好是空間體積在矩陣的變換下拉伸的倍數,它是一種線性形式。最後,當你讀微分流形後,將發現外微分是獲得流形上的Stokes定理的工具。
點集拓撲學這個東西,搞應用用不到。但是但凡你想往深處學,這一門學科就必須要掌握,因為它提供對諸如開集、緊集、連續、完備等數學基本概念的精準刻畫。往後學泛函分析、微分流形,沒有這些概念你將寸步難行。首先你要讀芒克里斯的曠世名著《拓撲學》,接著在讀其他外國人寫的書時,或多或少都會接觸一些相關概念,你的理解就加深了,比如讀Rudin的《泛函分析》,開始就是介紹線性拓撲空間,前面的知識你就能用上了。
4.4 建立不同學科的聯系
看到一個東西在很多地方用,你對它的理解就加深了,慢慢也就能體會到這個東西的精妙,最後你會發現所有的基礎學科相互交織,又在後續應用中相互幫助,切實體會到它們真的很基礎,很有用。這是一種體會數學樂趣的途徑。
4.5 關注應用學科
沒有什麼比應用更能激發你對新知識、新工具的渴望。找一些感興趣的應用學科教材,讀一讀,開闊眼界,為自己的未來積累資源。以下結合自己的專業(計算機視覺)和愛好說說一些優秀的專業書籍:
學了微積分,就可以無壓力閱讀《費恩曼物理學講義第一卷》,了解力、熱、光、時空的奧秘;學了偏微分方程,就可以無壓力閱讀《費恩曼物理學講義第二卷》,了解電的奧秘;學了矩陣論,可以買一本《計算機視覺中的多視圖幾何》,了解成像的奧秘,編程進行圖像序列的三維重建;學了概率論的同學應該會聽說過貝葉斯學派和頻率學派,這兩個學派的人把戰場拉到了機器學習領域,成就了兩本經典著作《Pattern Recognition And Machine Learning》和《The Elements of Statistical Learning》,讀了它們,我被基礎數學為機器學習領域提供的豐碩成果和深刻見解深深折服;讀了《Ray Tracing from the Ground Up》,自己寫了一個光線追蹤器渲染真實場景,它的基礎就是一點點微積分和矩陣......
高等數學的應用實在是太多了,如果你喜歡編程,自動化、機器人、計算機視覺、模式識別、數據挖掘、圖形圖像、資訊理論和密碼學......到處都有大量模型供你玩耍,而且只需要一點點高等數學。在這些領域,你可能能發現比數學書更有趣,也更容易找到工作的目標。
4.6 找有趣的書看
數學家寫的書有時是比較死板的,但是總有一些教材,它們的作者有強烈的慾望想向你展示"這個東西其實很有趣","這個東西完全不是你想的那個樣子"等等,他們成功了;還有些作者,他們喜歡把一個東西在不同領域的應用,和不同東西在某一領域的應用集中展示給你看。這樣的書會提供給你充足的樂趣讀下去。典型代表就是國內出版的一套《圖靈數學統計學叢書》,這一套書實在是太棒了,比如《線性代數應該這樣學》《復分析:可視化方法》《微分方程、動力系統與混沌導論》,個人認為都是學數學必讀的經典教材,非常非常有趣。
五、多讀書,讀好書
如果只有一句話概括如何培養數學能力,那麼就是這一句:多讀書,讀好書。因此這一步我想單獨拿出來多說兩句。
想必大家都十分精通並能熟練應用小學數學。想讀懂代數幾何,或者退一步,想讀懂資訊理論基礎,你就要挑幾本好的基礎教材,最好是外國人寫的,像掌握小學數學那樣掌握它。不要只看一本,找三本不同作者的書,對比著看,逐行逐字看。有的地方肯定看不懂,記下來,說不定在另一本書的某個地方就從另一個角度說到了這個東西。
如果你以後還要往後學,現在看到的每一個基礎定理,以後還會用到。
每一本基礎書,你今天放棄,明天還要乖乖重頭再來。
要像讀經文一樣,交叉閱讀對比不同教材內容的異同。
5.1. 推薦教材(其實就是我讀過的覺得好的書):
第一級:
《線性代數應該這樣學》
卓里奇《數學分析(兩冊)》(讀英文版吧,不難。有知友說這個還是不太簡單,那你可以先看個國內教材,然後回過頭來再看這個)
復旦大學《概率論》
第二級:
芒克里斯《拓撲學》
圖靈叢書的一些分冊
柯斯特利金《代數學引論》
Vapnik《統計學習理論的本質》
Rudin《數學分析原理》
Rudin《泛函分析》
Gamelin《復分析》
彭家貴《微分幾何》
Cover《資訊理論基礎》
第三級:
《微分流行與黎曼幾何》
《現代幾何學,方法與應用》三卷
5.2. 閱讀一些科普教材
《數學是什麼》
《高觀點下的初等數學》
《巴赫、埃舍爾、哥德爾》
《e的故事》
5.3. 閱讀各個領域最有趣、最活潑、最讓你長知識、最重視應用、文筆最易懂的教材和書籍
《費恩曼物理學講義》三冊
《混沌與分形:科學的新疆界》
《微分方程、動力系統與混沌導論》
《復分析:可視化方法》
最後想說,數學是一個無底洞,會消耗掉你寶貴的青春。一無所知的你可能勵志搞懂現代數學,但是多會半途卻步,同時剩下的時間又不夠精通另一門科學。而且即使你精通純數學,沒有幾篇好文章也並不容易找工作。
我的建議是在閱讀數學的過程中開拓眼界,純數學和應用數學學科都看看,找到感興趣、應用廣泛、工作好找(來錢)的方向再一猛紮下去成為你的事業。比如數學扎實,編程能力也強的人就很有前途。
作者:王小龍
鏈接:http://www.hu.com/question/19556658/answer/26950430
來源:知乎
著作權歸作者所有。商業轉載請聯系作者獲得授權,非商業轉載請註明出處。
㈤ 學好高中數學的方法知乎
學好高中數學的方法就是不斷刷題,針對每個知識點來做題
㈥ 高中數學提分最快的方法知乎
其實想學好數學並不難,這是一門技巧性很強的學科,只要掌握正確的學習方法,提分速度會特別快,夯實基礎 + 題海戰術 + 總結回顧,你就能輕松學好數學。
高中數學提分最快的方法是什麼
1數學從不及格到140分方法
首先肯定要先打好基礎,課本上最基礎的知識一定要先掌握住,其次要大量做題,把基礎知識轉化成解題能力,是後要總結、反思,掌握同類題型的解題規律,提高解題速度和正確率。
一、夯實數學基礎的方法。
首先課堂緊跟老師,認真聽每一節課,記好課堂筆記,有些學生喜歡自己課後自學,課堂不愛聽講,這是極錯誤的,因為老師對於高考的了解和對知識的掌握,遠遠勝過我們自學,緊跟老師是打好基礎最關鍵的一步。
對課本基礎知識的學習,我們強烈建議大家使用思維導圖,可以把課本上的知識都畫成樹狀層,這樣更容易理解、記憶,這樣知識點不再是孤立而是成了一個網,這比光看書效果要好很多很多。
二、數學正確的題海戰術方法。
想學好數學,大量刷題確實很有必要,但你真的會刷題嗎?多數同學雖然也做了大量的題目,但成績還是不好,核心原因就是做題忽略了最重要的一步,那就是總結反思。每做完一道題目,大家還需要總結一下,問一下自己下面這些問題:它考查了哪些知識、自己有沒有掌握、題目的解題思路在哪裡、突破口是什麼、屬於哪種題型、此類題型有什麼共同的套路、此類題型應該用什麼方法來解答。只有多問自己幾個為什麼,你才能真正吃透一道題,達到做一道題會一類題。
做題並不是越多越好,要知道題海戰術只是手段,我們最終的目的還是通過做題加深對知識的理解,掌握解題套路,提高做題速度,如果做題不總結,你刷再多題效果也不會明顯。
2數學快速提分的方法技巧
1,背概念、公式、定理、圖像
如果你現在是三四十分的話,你第一件事就是要背上面的這些,現在跟著老師走一輪,那麼要把老師提到過的每一個概念,公式定理與圖像都背下來,剛開始會很辛苦,畢竟高中數學的一些概念還是比較抽象的,但是小數老師告訴你,你背一段時間後,你會有很明顯的變化的!
要求:每個概念公式定理圖像都要背下來哦,你可以找你同桌提問你,比如,提問函數,你要知道函數的概念,函數的相關性質都有哪些,這些性質的概念又是什麼等。現在你可以不理解,但必須滾瓜爛熟!
註:這是最痛苦的一個階段哦,加油!
2,背例題老師上課會講一些例題,那第二步就是要把這個例題背下來,包括題目條件,求解與解法。
達標要求:你能合上課本,自己寫出題目條件與求解,並能默寫出步驟來!要找到題目中的關鍵詞,也就是題眼,也就是你之前背的概念公式定理圖像中的出現的那些詞,這才是題眼!因為解題的時候,我們的解題思路從哪來,就是從我們學過的知識轉化過來的!
註:這一步相對上一步來說,簡單了一點,因為題目是具體的,不抽象,背起來稍微容易一點!但是要注意抓住重點,那就是例題中的題眼!不要只記裡面的數字啊,否則,數字換一下,你就不會做了!
3,對例題的每一步轉化寫上來龍去脈
例題背下來之後,你也能分辨出題目的題眼了,也會了解題步驟了,接下來就要調動你的大腦來思考了!你要把每一步涉及到的公式概念都寫出來,比如:求函數的定義域,你記過求定義域的方法,那讓你求
的定義域時,首先是二次根號下被開放式必須大於等於0,所以有lgx大於等於0,又因為這是一個對數函數,想一想對數函數的圖象,找到函數值大於等於0對應的x值就是此函數的定義域了!
要求:每一步都要弄清楚,你不知道轉化的,一定要問,此時可以不計較數量,重視質量就可以了!這個質量是你自己真正能寫出來了!
註:數學題邏輯思維比較強,一定要分析每一步,不要感覺自己會了,就不寫了!
4,重新做例題(不是把答案背上去哦)
你弄明白之後,接下來就是要真正把他當做一道新題去做了,你完全按照做新題的方法,審題,找到題眼,然後想一想這些題眼該怎麼轉化,以前自己學過的知識怎麼運用,不同知識之間怎麼結合,然後一步步的去做這道題,在做題的過程中,還要注意計算的易錯點!
要求:一定不要背答案,這是自欺欺人哦!一步步分析著做,才會有提高!