❶ 現在初三數學上什麼內容呢,上到幾單元呢
浙江初中用的是浙教版的教科書,九上3個單元是:二次函數,概率,圓的基本性質,相似三角形;九下3個單元:銳角三角函數、圓與直線的位置關系、三視圖。授課進度每個學校不一樣,快的九下第一個單元已經上完了,慢的九上還有一個單元沒上
❷ 九年級數學上下冊各學什麼內容
上冊:二次函數,概率,圓,相似三角形,解三角形。下冊:直線與圓的位置關系,三視圖
❸ 請問人教版數學九年級上學期會學些什麼內容
我的女兒剛好是初三,我來告訴你:九年級數學上冊共有五個章節,它們是:第二十一章二次根式 第二十二章一元二次方程 第二十三章旋轉 第二十四章圓 第二十五章概率初步
就是這些,有其他問題再聯系。祝你學習進步!!!
❹ 初三的數學主要是學什麼
初三數學要學習的內容主要包括:直角三角形的邊角關系、反比例函數、二次函數、圓.知識內容看似不多,但是都是中考數學的重點和難點.首先,反比例函數與幾何綜合在中考選擇填空題中,出現壓軸題還是非常正常的;再者,對圓來講,它是平面幾何中知識最多的幾何圖形,
涉及的考點和題型也是最多的,在中考證明題中,難度一定不會小;最後,二次函數,在中考數學中以壓軸題的形式出現,幾乎可以算得上必考的壓軸題了.綜合上述所講,初三的學習內容難度不小,對中考起決定性的作用.
應該怎麼學
加強基礎:無論學什麼或者考什麼,都離不開基礎知識,在學習之初抓住基礎,不可一味求難.
適當拓展:掌握基礎為前提,進行相應的拓展.例如反比例函數與幾何綜合的中考題型可以盡早去接觸,二次函數壓軸題型也要經常去訓練,這樣才不至於時間太緊張而錯失學習的機會.
❺ 九年級上冊數學主要內容
九年級上冊數學期末基礎知識復習
二次根式
知識點1.二次根式 重點:掌握二次根式的概念。 難點:二次根式有意義的條件
式子
(a≥0)叫做二次根式.
知識點 2.最簡二次根式
重點:掌握最簡二次根式的條件[來源:學.難點:正確分清是否為最簡二次根式
同時滿足:①被開方數的因數是整數,因式是整式(分母中不含根號);②被開方數中含能開得盡方的因數或因式.這樣的二次根式叫做最簡二次根式.
知識點3.同類二次根式
重點:掌握同類二次根式的概念 難點:正確分清是否為同類二次根式
幾個二次根式化成最簡二次根式後,如果被開方數相同,這幾個二次根式就叫同類二次根式.
知識點4.二次根式的性質
重點:掌握二次根式的性質 難點:理解和熟練運用二次根式的性質
①(
)2=a(a≥0);
②
=│a│=
;
知識點5.分母有理化及有理化因式
重點:掌握分母有理化及有理化因式的概念
難點:熟練進行分母有理化,求有理化因式
把分母中的根號化去,叫做分母有理化;兩個含有二次根式的代數式相乘,若它們的積不含二次根式,則稱這兩個代數式互為有理化因式.
例觀察下列分母有理化的計算:
,從計算結果中找出規律,並利用這一規律計算:
=_____________
解題思路:
知識點6.二次根式的運算
重點:掌握二次根式的運演算法則 難點:熟練進行二次根式的運算
(1)因式的外移和內移:如果被開方數中有的因式能夠開得盡方,那麼,就可以用它的算術根代替而移到根號外面;如果被開方數是代數和的形式,那麼先解因式,變形為積的形式,再移因式到根號外面,反之也可以將根號外面的正因式平方後移到根號裡面.
(2)二次根式的加減法:先把二次根式化成最簡二次根式再合並同類二次根式.
(3)二次根式的乘除法:二次根式相乘(除),將被開方數相乘(除),所得的積(商)仍作積(商)的被開方數並將運算結果化為最簡二次根式.
=
·
(a≥0,b≥0);
(b≥0,a>0).
(4)有理數的加法交換律、結合律,乘法交換律及結合律,乘法對加法的分配律以及多項式的乘法公式,都適用於二次根式的運算.
最新考題中考要求及命題趨勢1、掌握二次根式的有關知識,包括概念,性質、運算等;2、熟練地進行二次根式的運算
一 元 二 次 方 程
一、知識結構:
一元二次方程:概念、解與解法、實際應用、根與系數的關系。
二、考點精析
考點一、概念(1)定義:①只含有一個未知數,並且②未知數的最高次數是2,這樣的③整式方程就是一元二次方程。
(2)一般表達式:
⑶難點:如何理解 「未知數的最高次數是2」:①該項系數不為「0」;②未知數指數為「2」;
③若存在某項指數為待定系數,或系數也有待定,則需建立方程或不等式加以討論。
例2、方程
是關於x的一元二次方程,則m的值為 。
考點二、方程的解
⑴概念:使方程兩邊相等的未知數的值,就是方程的解。 ⑵應用:利用根的概念求代數式的值;
典型例題:例1、已知
的值為2,則
的值為
。
考點三、解法
⑴方法:①直接開方法;②因式分解法;③配方法;④公式法 ⑵關鍵點:降次
類型一、直接開方法:
※※對於
,
等形式均適用直接開方法
典型例題:例1、解方程:
=0;
例2、若
,則x的值為 。
類型二、因式分解法:
※方程特點: 左邊可以分解為兩個一次因式的積,右邊為「0」,
※方程形式:如
,
,
典型例題:例1、
的根為( )A .
B .
C .
D.
例2、若
,則4x+y的值為 。
類型三、配方法
※在解方程中,多不用配方法;但常利用配方思想求解代數式的值或極值之類的問題。
典型例題:試用配方法說明
的值恆大於0。
類型四、公式法⑴條件:
⑵公式:
,
典型例題: 例1、選擇適當方法解下列方程:
⑴
⑵
⑶
類型五、 「降次思想」的應用
⑴求代數式的值; ⑵解二元二次方程組。
典型例題:已知
,求代數式
的值。
考點四、根的判別式
根的判別式的作用:①定根的個數;②求待定系數的值;③應用於其它。
典型例題:例1、若關於
的方程
有兩個不相等的實數根,則k的取值范圍是 。
考點五、方程類問題中的「分類討論」
典型例題: 例1、討論關於x的方程
根的情況。
考點六、應用解答題
⑴「碰面」問題;⑵「復利率」問題;⑶「幾何」問題;
⑷「最值」型問題;⑸「圖表」類問題
典型例題:
1、將一條長20cm的鐵絲剪成兩段,並以每一段鐵絲的長度為周長作成一個正方形。
(1)要使這兩個正方形的面積之和等於17cm2,那麼這兩段鐵絲的長度分別為多少?
考點七、根與系數的關系
⑴前提:對於
而言,當滿足①
、②
時,
才能用韋達定理。
⑵主要內容:
⑶應用:整體代入求值。
典型例題:例1、已知關於x的方程
有兩個不相等的實數根
,
(1)求k的取值范圍;
(2)是否存在實數k,使方程的兩實數根互為相反數?若存在,求出k的值;若不存在,請說明理由。
旋轉
知識網路圖表
圖案設計
識別及應用
關於原點對稱的點的坐標
中心對稱
中心對稱圖形
圖形旋轉
平移及性質
平移及性質
旋轉及性質
(1)
中心對稱:把一個圖形繞某一點旋轉
,如果能與另一個圖形重合.這個點叫對稱中心,這兩個圖形中的對應點關於這一點對稱.
(2)
關於旋轉的性質:對應點到旋轉中心的距離相等;對應點與旋轉中心所連線段的夾角等於旋轉角;旋轉前後的圖形全等。
第1題. 下列是中心對稱圖形的有()
(1)線段;(2)角;(3)等邊三角形;(4)正方形;(5)平行四邊形;(6)矩形;(7)等腰梯形.
A.2個 B.3個 C.4個 D.5個
答案:C.
第5題. 在線段、射線、兩條相交直線、五角星中,是中心對稱圖形的個數為()
A.1個 B.2個 C.3個 D.4個 答案:B.
圓
一、知識點
1、與圓有關的角——圓心角、圓周角
(1)圖中的圓心角 ∠ AOB ;圓周角∠
ACB ;
(2)如圖,已知∠AOB=50度,則∠ACB= 25
度;
(3)在上圖中,若AB是圓O的直徑,則∠AOB= 180
度;則∠ACB= 90
度;
2、圓的對稱性:
(1)圓是軸對稱圖形,其對稱軸是任意一條
過圓心 的直線;
圓是中心對稱圖形,對稱中心為 圓心 .
(2)垂徑定理:垂直於弦的直徑平分這條弦,並且平分弦所對的弧.
如圖,∵CD是圓O的直徑,CD⊥AB於E∴ = , =
3、點和圓的位置關系有三種:點在圓 ,點在圓 ,點在圓 ;
4、直線和圓的位置關系有三種:相 、相 、相 .
5、圓與圓的位置關系:
6、切線性質:
例4:(1)如圖,PA是⊙O的切線,點A是切點,則∠PAO= 度
(2)如圖,PA、PB是⊙O的切線,點A、B是切點,
則 = ,∠ =∠ ;
7、圓中的有關計算
(1)弧長的計算公式:
例5:若扇形的圓心角為60°,半徑為3,則這個扇形的弧長是多少?
解:因為扇形的弧長=
所以
=
= (答案保留π)
(2)扇形的面積:
例6:①若扇形的圓心角為60°,半徑為3,則這個扇形的面積為多少?
解:因為扇形的面積S=
所以S=
= (答案保留π)
②若扇形的弧長為12πcm,半徑為6㎝,則這個扇形的面積是多少?
解:因為扇形的面積S=
所以S= =
( 3)圓錐:
例7:圓錐的母線長為5cm,半徑為4cm,則圓錐的側面積是多少?
解:∵圓錐的側面展開圖是 形,展開圖的弧長等於
∴圓錐的側面積=
概率初步
【知識梳理】
1.生活中的隨機事件分為確定事件和不確定事件,確定事件又分為必然事件和不可能事件,其中,
① 必然事件發生的概率為1,即P(必然事件)=1;
② 不可能事件發生的概率為0,即P(不可能事件)=0;
③ 如果A為不確定事件,那麼0<P(A)<1
2.隨機事件發生的可能性(概率)的計算方法:
① 理論計算又分為如下兩種情況:
第一種:只涉及一步實驗的隨機事件發生的概率,如:根據概率的大小與面積的關系,對一類概率模型進行的計算;
第二種:通過列表法、列舉法、樹狀圖來計算涉及兩步或兩步以上實驗的隨機事件發生的概率,如:對游戲是否公平的計算。
② 實驗估算又分為如下兩種情況:
第一種:利用實驗的方法進行概率估算。要知道當實驗次數非常大時,實驗頻率可作為事件發生的概率的估計值,即大量實驗頻率穩定於理論概率。
第二種:利用模擬實驗的方法進行概率估算。如,利用計算器產生隨機數來模擬實驗。
綜上所述,目前掌握的有關於概率模型大致分為三類;第一類問題沒有理論概率,只能藉助實驗模擬獲得其估計值;第二類問題雖然存在理論概率但目前尚不可求,只能藉助實驗模擬獲得其估計值;第三類問題則是簡單的古典概型,理論上容易求出其概率。
❻ 初三(上下冊)數學要有哪些內容(人教版)
九年級數學上冊共有五個章節,它們是:第二十一章二次根式 第二十二章一元二次方程 第二十三章旋轉 第二十四章圓 第二十五章概率初步
❼ 初三九年級上冊數學的知識點歸納
九年級上冊包括二次根式、一元二次方程、旋轉、圓、概率初步五章內容,學習內容涉及到了《課程標准》的四個領域。本冊書內容分析如下:
第21章 二次根式
學生已經學過整式與分式,知道用式子可以表示實際問題中的數量關系。解決與數量關系有關的問題還會遇到二次根式。二次根式 一章就來認識這種式子,探索它的性質,掌握它的運算。
在這一章,首先讓學生了解二次根式的概念,並掌握以下重要結論:
註:關於二次根式的運算,由於二次根式的乘除相對於二次根式的加減來說更易於掌握,教科書先安排二次根式的乘除,再安排二次根式的加減。二次根式的乘除一節的內容有兩條發展的線索。一條是用具體計算的例子體會二次根式乘除法則的合理性,並運用二次根式的乘除法則進行運算;一條是由二次根式的乘除法則得到並運用它們進行二次根式的化簡。
二次根式的加減一節先安排二次根式加減的內容,再安排二次根式加減乘除混合運算的內容。在本節中,注意類比整式運算的有關內容。例如,讓學生比較二次根式的加減與整式的加減,又如,通過例題說明在二次根式的運算中,多項式乘法法則和乘法公式仍然適用。這些處理有助於學生掌握本節內容。
第22章 一元二次方程
學生已經掌握了用一元一次方程解決實際問題的方法。在解決某些實際問題時還會遇到一種新方程 一元二次方程。一元二次方程一章就來認識這種方程,討論這種方程的解法,並運用這種方程解決一些實際問題。
本章首先通過雕像設計、製作方盒、排球比賽等問題引出一元二次方程的概念,給出一元二次方程的一般形式。然後讓學生通過數值代入的方法找出某些簡單的一元二次方程的解,對一元二次方程的解加以體會,並給出一元二次方程的根的概念,
22.2降次解一元二次方程一節介紹配方法、公式法、因式分解法三種解一元二次方程的方法。下面分別加以說明。
(1)在介紹配方法時,首先通過實際問題引出形如 的方程。這樣的方程可以化為更為簡單的形如 的方程,由平方根的概念,可以得到這個方程的解。進而舉例說明如何解形如 的方程。然後舉例說明一元二次方程可以化為形如 的方程,引出配方法。最後安排運用配方法解一元二次方程的例題。在例題中,涉及二次項系數不是1的一元二次方程,也涉及沒有實數根的一元二次方程。對於沒有實數根的一元二次方程,學了公式法以後,學生對這個內容會有進一步的理解。
(2)在介紹公式法時,首先藉助配方法討論方程 的解法,得到一元二次方程的求根公式。然後安排運用公式法解一元二次方程的例題。在例題中,涉及有兩個相等實數根的一元二次方程,也涉及沒有實數根的一元二次方程。由此引出一元二次方程的解的三種情況。
(3)在介紹因式分解法時,首先通過實際問題引出易於用因式分解法的一元二次方程,引出因式分解法。然後安排運用因式分解法解一元二次方程的例題。最後對配方法、公式法、因式分解法三種解一元二次方程的方法進行小結。
22.3實際問題與一元二次方程一節安排了四個探究欄目,分別探究傳播、成本下降率、面積、勻變速運動等問題,使學生進一步體會方程是刻畫現實世界的一個有效的數學模型。
第23章 旋轉
學生已經認識了平移、軸對稱,探索了它們的性質,並運用它們進行圖案設計。本書中圖形變換又增添了一名新成員――旋轉。旋轉一章就來認識這種變換,探索它的性質。在此基礎上,認識中心對稱和中心對稱圖形。
23.1旋轉一節首先通過實例介紹旋轉的概念。然後讓學生探究旋轉的性質。在此基礎上,通過例題說明作一個圖形旋轉後的圖形的方法。最後舉例說明用旋轉可以進行圖案設計。
23.2中心對稱一節首先通過實例介紹中心對稱的概念。然後讓學生探究中心對稱的性質。在此基礎上,通過例題說明作與一個圖形成中心對稱的圖形的方法。這些內容之後,通過線段、平行四邊形引出中心對稱圖形的概念。最後介紹關於原點對稱的點的坐標的關系,以及利用這一關系作與一個圖形成中心對稱的圖形的方法。
23.3課題學習 圖案設計一節讓學生探索圖形之間的變換關系(平移、軸對稱、旋轉及其組合),靈活運用平移、軸對稱、旋轉的組合進行圖案設計。
第24章 圓
圓是一種常見的圖形。在圓這一章,學生將進一步認識圓,探索它的性質,並用這些知識解決一些實際問題。通過這一章的學習,學生的解決圖形問題的能力將會進一步提高。
24.1圓一節首先介紹圓及其有關概念。然後讓學生探究與垂直於弦的直徑有關的結論,並運用這些結論解決問題。接下來,讓學生探究弧、弦、圓心角的關系,並運用上述關系解決問題。最後讓學生探究圓周角與圓心角的關系,並運用上述關系解決問題。
24.2與圓有關的位置關系一節首先介紹點和圓的三種位置關系、三角形的外心的概念,並通過證明在同一直線上的三點不能作圓引出了反證法。然後介紹直線和圓的三種位置關系、切線的概念以及與切線有關的結論。最後介紹圓和圓的位置關系。
24.3正多邊形和圓一節揭示了正多邊形和圓的關系,介紹了等分圓周得到正多邊形的方法。
24.4弧長和扇形面積一節首先介紹弧長公式。然後介紹扇形及其面積公式。最後介紹圓錐的側面積公式。
第25 章 概率初步
將一枚硬幣拋擲一次,可能出現正面也可能出現反面,出現正面的可能性大還是出現反面的可能性大呢?學了概率一章,學生就能更好地認識這個問題了。掌握了概率的初步知識,學生還會解決更多的實際問題。
25.1概率一節首先通過實例介紹隨機事件的概念,然後通過擲幣問題引出概率的概念。
25.2用列舉法求概率一節首先通過具體試驗引出用列舉法求概率的方法。然後安排運用這種方法求概率的例題。在例題中,涉及列表及畫樹形圖。
25.3利用頻率估計概率一節通過幼樹成活率和柑橘損壞率等問題介紹了用頻率估計概率的方法。
25.4課題學習 鍵盤上字母的排列規律一節讓學生通過這一課題的研究體會概率的廣泛應用。
一、圓周角定理
在同圓或等圓中,同弧或等弧所對的圓周角相等,都等於這條弧所對的圓心角的一半。
①定理有三方面的意義:
a.圓心角和圓周角在同一個圓或等圓中;(相關知識點 如何證明四點共圓 )
b.它們對著同一條弧或者對的兩條弧是等弧
c.具備a、b兩個條件的圓周角都是相等的,且等於圓心角的一半.
②因為圓心角的度數與它所對的弧的度數相等,所以圓周角的度數等於它所對的弧的度數的一半.
二、圓周角定理的推論
推論1:同弧或等弧所對的圓周角相等,同圓或等圓中,相等的圓周角所對的弧也相等
推論2:半圓(或直徑)所對的圓周角等於90°;90°的圓周角所對的弦是直徑
推論3:如果三角形一邊的中線等於這邊的一半,那麼這個三角形是直角三角形
三、推論解釋說明
圓周角定理在九年級數學知識點中屬於幾何部分的重要內容。
①推論1是圓中證明角相等最常用的方法,若將推論1中的「同弧或等弧」改為「同弦或等弦」結論就不成立.因為一條弦所對的圓周角有兩個.
②推論2中「相等的圓周角所對的弧也相等」的前提條件是「在同圓或等圓中」
③圓周角定理的推論2的應用非常廣泛,要把直徑與90°圓周角聯系起來,一般來說,當條件中有直徑時,通常會作出直徑所對的圓周角,從而得到直角三角形,為進一步解題創造條件
④推論3實質是直角三角形的斜邊上的中線等於斜邊的一半的逆定理.
知識點一: 二次根式的概念
形如a(a0)的式子叫做二次根式。
註:在二次根式中,被開放數可以是數,也可以是單項式、多項式、分式等代數式,但必須注意:因為負數沒有平方根,所以a0是a為二次根式的前提條件,如5,(x2+1),
(x-1) (x1)等是二次根式,而(-2),(-x2-7)等都不是二次根式。
知識點二:取值范圍
1. 二次根式有意義的條件:由二次根式的意義可知,當a0時a有意義,是二次根式,所以要使二次根式有意義,只要使被開方數大於或等於零即可。
2. 二次根式無意義的條件:因負數沒有算術平方根,所以當a﹤0時,a沒有意義。
知識點三:二次根式a(a0)的非負性
a(a0)表示a的算術平方根,也就是說,a(a0)是一個非負數,即0(a0)。
註:因為二次根式a表示a的算術平方根,而正數的算術平方根是正數,0的算術平方根是0,所以非負數(a0)的算術平方根是非負數,即0(a0),這個性質也就是非負數的算術平方根的性質,和絕對值、偶次方類似。這個性質在解答題目時應用較多,如若a+b=0,則a=0,b=0;若a+|b|=0,則a=0,b=0;若a+b2=0,則a=0,b=0。
知識點四:二次根式(a) 的性質
(a)2=a(a0)
文字語言敘述為:一個非負數的算術平方根的平方等於這個非負數。
註:二次根式的性質公式(a)2=a(a0)是逆用平方根的定義得出的結論。上面的公式也可以反過來應用:若a0,則
a=(a)2,如:2=(2)2,1/2=(1/2)2.
知識點五:二次根式的性質
a2=|a|
文字語言敘述為:一個數的平方的算術平方根等於這個數的絕對值。
註:
1、化簡a2時,一定要弄明白被開方數的底數a是正數還是負數,若是正數或0,則等於a本身,即a2=|a|=a (a若a是負數,則等於a的相反數-a,即a2=|a|=-a (a﹤0);
2、a2中的a的取值范圍可以是任意實數,即不論a取何值,a2一定有意義;
3、化簡a2時,先將它化成|a|,再根據絕對值的意義來進行化簡。
知識點六:(a)2與a2的異同點
1、不同點:(a)2與a2表示的意義是不同的,(a)2表示一個非負數a的算術平方根的平方,而a2表示一個實數a的平方的算術平方根;在(a)2中,而a2中a可以是正實數,0,負實數。但(a)2與a2都是非負數,即(a)20,a20。因而它的運算的結果是有差別的,(a)2=a(a0) ,而a2=|a|。
2、相同點:當被開方數都是非負數,即a0時,(a)2=a﹤0時,(a)2無意義,而a2=|a|=-a.
單項式與多項式
僅含有一些數和字母的乘法包括乘方運算的式子叫做單項式單獨的一個數或字母也是單項式。
單項式中的數字因數叫做這個單項式或字母因數的數字系數,簡稱系數。
當一個單項式的系數是1或—1時,「1」通常省略不寫。
一個單項式中,所有字母的指數的和叫做這個單項式的次數。
如果在幾個單項式中,不管它們的系數是不是相同,只要他們所含的字母相同,並且相同字母的指數也分別相同,那麼,這幾個單項式就叫做同類單項式,簡稱同類項所有的常數都是同類項。
1、多項式
有有限個單項式的代數和組成的式子,叫做多項式。
多項式里每個單項式叫做多項式的項,不含字母的項,叫做常數項。
單項式可以看作是多項式的特例
把同類單項式的系數相加或相減,而單項式中的字母的乘方指數不變。
在多項式中,所含的不同未知數的個數,稱做這個多項式的元數經過合並同類項後,多項式所含單項式的個數,稱為這個多項式的項數所含個單項式中次項的次數,就稱為這個多項式的次數。
2、多項式的值
任何一個多項式,就是一個用加、減、乘、乘方運算把已知數和未知數連接起來的式子。
3、多項式的.恆等
對於兩個一元多項式fx、gx來說,當未知數x同取任一個數值a時,如果它們所得的值都是相等的,即fa=ga,那麼,這兩個多項式就稱為是恆等的記為fx==gx,或簡記為fx=gx。
性質1如果fx==gx,那麼,對於任一個數值a,都有fa=ga。
性質2如果fx==gx,那麼,這兩個多項式的個同類項系數就一定對應相等。
4、一元多項式的根
一般地,能夠使多項式fx的值等於0的未知數x的值,叫做多項式fx的根。
多項式的加、減法,乘法
1、多項式的加、減法
2、多項式的乘法
單項式相乘,用它們系數作為積的系數,對於相同的字母因式,則連同它的指數作為積的一個因式。
3、多項式的乘法
多項式與多項式相乘,先用一個多項式等每一項乘以另一個多項式的各項,再把所得的積相加。
常用乘法公式
公式I平方差公式
a+ba—b=a^2—b^2
兩個數的和與這兩個數的差的積等於這兩個數的平方差。
一、等腰三角形
1、定義:有兩邊相等的三角形是等腰三角形。
2、性質:1.等腰三角形的兩個底角相等(簡寫成「等邊對等角」)
2.等腰三角形的頂角的平分線,底邊上的中線,底邊上的高的重合(「三線合一」)
3.等腰三角形的兩底角的平分線相等。(兩條腰上的中線相等,兩條腰上的高相等)
4.等腰三角形底邊上的垂直平分線上的點到兩條腰的距離相等。
5.等腰三角形的一腰上的高與底邊的夾角等於頂角的一半
6.等腰三角形底邊上任意一點到兩腰距離之和等於一腰上的高(可用等面積法證)
7.等腰三角形是軸對稱圖形,只有一條對稱軸,頂角平分線所在的直線是它的對稱軸
3、判定:在同一三角形中,有兩個角相等的三角形是等腰三角形(簡稱:等角對等邊)。
特殊的等腰三角形
等邊三角形
1、定義:三條邊都相等的三角形叫做等邊三角形,又叫做正三角形。
(注意:若三角形三條邊都相等則說這個三角形為等邊三角形,而一般不稱這個三角形為等腰三角形)。
2、性質:⑴等邊三角形的內角都相等,且均為60度。
⑵等邊三角形每一條邊上的中線、高線和每個角的角平分線互相重合。
⑶等邊三角形是軸對稱圖形,它有三條對稱軸,對稱軸是每條邊上的中線、高線或所對角的平分線所在直線。
3、判定:⑴三邊相等的三角形是等邊三角形。
⑵三個內角都相等的三角形是等邊三角形。
⑶有一個角是60度的等腰三角形是等邊三角形。
⑷有兩個角等於60度的三角形是等邊三角形。
二、直角三角形全等
1、直角三角形全等的判定有5種:
(1)、兩角及其夾邊對應相等的兩個三角形全等;(asa)
(2)、兩邊及其夾角對應相等的兩個三角形全等;(sas)
(3)、三邊對應相等的兩個三角形全等;(sss)
(4)、兩角及其中一角的對邊對應相等的兩個三角形全等;(aas)
(5)、斜邊及一條直角邊對應相等的兩個三角形全等;(hl)
2、在直角三角形中,如有一個內角等於30,那麼它所對的直角邊等於斜邊的一半
3、在直角三角形中,斜邊上的中線等於斜邊的一半
4垂直平分線:垂直於一條線段並且平分這條線段的直線。
性質:線段垂直平分線上的點到這一條線段兩個端點距離相等。
判定:到一條線段兩端點距離相等的點,在這條線段的垂直平分線上。
5、三角形的三邊的垂直平分線交於一點,並且這個點到三個頂點的距離相等,交點為三角形的外心。
6、角平分線上的點到角兩邊的距離相等。
7、在角內部的,如果一點到角兩邊的距離相等,則它在該角的平分線上。
8、角平分線是到角的兩邊距離相等的所有點的集合。
9、三角形三條角平分線交於一點,並且交點到三邊距離相等,交點即為三角形的內心。
10、三角形三條中線交於一點,交點為三角形的重心。
11、三角形三條高線交於一點,交點為三角形的垂心。
三、平行四邊的定義
1、定義:兩線對邊分別平行的四邊形叫做平行四邊形,
2、性質:(1)平行四邊形的對邊相等,(2)對角相等,(3)對角線互相平分。
3、判定:(1)一組對邊平行且相等的四邊形是平行四邊形。
(2)兩條對角線互相平分的四邊形是平行四邊形。
(3)兩組對邊分別相等的四邊形是平行四邊形。
(4)兩組對角分別相等的四邊形是平行四邊形。
(5)一組對邊平行,一組對角相等的四邊形是平行四邊形。
(6)一組對邊平行,一條對角線被另一條對角線平分的四邊形是平行四邊形。
兩個假命題:(1)一組對邊平行,另一組對邊相等的四邊形是平行四邊形。
(2)一組對邊相等,一組對角相等的四邊形是平行四邊形。
四、矩形
1、定義:有一個角是直角的平行四邊形叫矩形。矩形是特殊的平行四邊形。
2、性質:(1)具有平行四邊形的性質,(2)對角線相等,(3)四個角都是直角。
(4)矩形是軸對稱圖形,有兩條對稱軸。
3、判定:(1)有三個角是直角的四邊形是矩形。
(2)對角線相等的平行四邊形是矩形。
五、菱形
1、定義:一組鄰邊相等的平行四邊形叫做菱形。
2、性質:(1)具有平行四邊形的性質,(2)四條邊都相等,(3)兩條對角線互相垂直,每一條對角線平分一組對角。(4)菱形是軸對稱圖形,每條對角線所在的直線都是對稱軸。
3、判定:(1)四條邊都相等的四邊形是菱形。
(2)對角線互相垂直的平行四邊形是菱形。
(3)一條對角線平分一組對角的平行四邊形是菱形。
六、正方形
1、定義:一組鄰邊相等且有一個角是直角的平行四邊形叫做正方形。
2、性質:正方形具有平行四邊形、矩形、菱形的一切性質。
3、判定:(1)有一個內角是直角的菱形是正方形;
(2)有一組鄰邊相等的矩形是正方形;
(3)對角線相等的菱形是正方形;
(4)對角線互相垂直的矩形是正方形。
七、梯形定義:
一組對邊平行且另一組對邊不平行的四邊形叫做梯形。
八、等腰梯形
1、定義:兩條腰相等的梯形叫做等腰梯形。
2、性質:等腰梯形同一底上的兩個內角相等,對角線相等。
3、同一底上的兩個內角相等的梯形是等腰梯形。
九、三角形的中位線
定義:連接三角形兩邊中點的線段。
性質:平行於第三邊,並且等於第三邊的一半。
十、梯形的中位線
定義:連接梯形兩腰中點的線段。
性質:平行於兩底,並且等於兩底和的一半。
❽ 九年級上冊數學書內容有哪些
九年級數學分為代數、幾何兩個部分。
代數內容有二次函數,統計初步二章;幾何內容有相似三角形、銳角三角比、圓與正多邊形三章。初三數學的學習,是以前兩年數學學習為基礎的,是對已學知識的加深、拓寬、綜合與延續,是初中數學學習的重點,也是中考考查的重點。
相信很多同學已經體會到這樣一件事,就是初一的數學比小學難,初二的數學比初一的數學更難,初三的數學已經有同學上課聽不懂,盯著黑板發呆的人不少。
初三數學是以前兩年的學習內容為基礎的,可以用來復習、鞏固相關的內容,同時新知識的學習常常由舊知識引入或要用到前面所學過的內容,甚至是已有知識的綜合、提高與延續。因此在學習中,要注意前後知識的聯系,以便達到鞏固與提高的目的。
其實,要學好初中數學,初一的時候一定要打好基礎,初二的時候成績要穩得住,初三復習階段需要多總結錯題,這樣中考才能考出理想的成績。
為了幫助學生學好初三數學,我給大家分享一份初三數學上冊的全冊知識點總結,、希望這份資料能夠補上孩子的不足,好好利用這份資料就會在開學考試的時候考出好成績。正好現在有時間,好好學習吧!
❾ 初三數學書目錄及重要知識點
初三數學的重要知識點有一元二次方程、二次函數、圓、概率、反比例函數等等,接下來分享初三數學書目錄及部分重要知識點。
(一)一元二次方程
1.只含有一個未知數(一元),並且未知數項的最高次數是2(二次)的整式方程叫做一元二次方程。
2.一元二次方程的解法
(1)開平方法 (2)配方法
(3)因式分解法 (4)求根公式法
3.判別式
利用一元二次方程根的判別式(△=b²-4ac),可以判斷方程的根的情況。
(1)當△>0時,方程有兩個不相等的實數根;
(2)當△=0時,方程有兩個相等的實數根;
(3)當△<0時,方程無實數根,但有2個共軛復根。
(二)圓
1.在一個平面內,一動點以一定點為中心,以一定長度為距離旋轉一周所形成的封閉曲線叫做圓。圓有無數條對稱軸。
2.徑
連接圓心和圓上的任意一點的線段叫做半徑,字母表示為r。
通過圓心並且兩端都在圓上的線段叫做直徑,字母表示為d。
直徑所在的直線是圓的對稱軸。在同一個圓中,圓的直徑 d=2r。
3.弦:連接圓上任意兩點的線段叫做弦。
在同一個圓內最長的弦是直徑。直徑所在的直線是圓的對稱軸,因此,圓的對稱軸有無數條。
4.弧:圓上任意兩點間的部分叫做圓弧。
5.圓的垂徑定理
(1)垂直於弦的直徑平分這條弦,並且平分這條弦所對的兩條弧。
(2)弦的垂直平分線經過圓心,並且平分弦作對的兩條弧。
(3)平分弦所對的一條弧的直徑,垂直平分弦,並且平分弦所對的另一條弧。
6.圓的切線定理
(1)垂直於過切點的半徑;經過半徑的外端點,並且垂直於這條半徑的直線,是這個圓的切線。
(2)切線的判定方法:經過半徑外端並且垂直於這條半徑的直線是圓的切線。
7.圓的周角定理
(1)圓周角的度數等於它所對的弧的度數的一半。
(2)一條弧所對的圓周角等於它所對的圓心角的一半。
(3)「等弧對等角」、「等角對等弧」。
(4)「直徑對直角」、「直角對直徑」。
8.周長相等,圓面積比正方形、長方形、三角形的面積大。
❿ 初三數學上冊課本知識點總結
課堂臨時報佛腳,不如 課前預習 好。其實任何學科都是一樣的,學習任何一門學科,勤奮都是最好的 學習 方法 ,沒有之一,書山有路勤為徑。下面是我給大家整理的一些初三數學的知識點,希望對大家有所幫助。
初三數學課本知識點
數學—函數
1、二次函數的三種表達式
一般式:y=ax^2+bx+c(a,b,c為常數,a≠0)
頂點式:y=a(x-h)^2+k[拋物線的頂點p(h,k)]
交點式:y=a(x-x?)(x-x?)[僅限於與x軸有交點a(x?,0)和b(x?,0)的拋物線]
註:在3種形式的互相轉化中,有如下關系:
h=-b/2ak=(4ac-b^2)/4ax?,x?=(-b±√b^2-4ac)/2a
2、二次函數的圖像
在數學平面直角坐標系中作出二次函數y=x^2的圖像,可以看出,二次函數的圖像是一條拋物線。
iv.拋物線的性質
1.數學拋物線是軸對稱圖形。對稱軸為直線x=-b/2a。
數學對稱軸與拋物線唯一的交點為拋物線的頂點p。特別地,當b=0時,拋物線的對稱軸是y軸(即直線x=0)
2.拋物線有一個頂點p,坐標為:p(-b/2a,(4ac-b^2)/4a)當-b/2a=0時,p在y軸上;當δ=b^2-4ac=0時,p在x軸上。
3.數學二次項系數a決定拋物線的開口方向和大小。
當a>0時,拋物線向上開口;當a<0時,拋物線向下開口。|a|越大,則拋物線的開口越小。
4.一次項系數b和二次項系數a共同決定對稱軸的位置。
當a與b同號時(即ab>0),對稱軸在y軸左;
當a與b異號時(即ab<0),對稱軸在y軸右。
5.常數項c決定拋物線與y軸交點。
拋物線與y軸交於(0,c)
初三新學期數學知識點
一元一次方程:
①在一個方程中,只含有一個未知數,並且未知數的指數是
1、這樣的方程叫一元一次方程。
②等式兩邊同時加上或減去或乘以或除以(不為0)一個代數式,所得結果仍是等式。
解一元一次方程的步驟:
去分母,移項,合並同類項,未知數系數化為1。
二元一次方程:含有兩個未知數,並且所含未知數的項的次數都是1的方程叫做二元一次方程。
二元一次方程組:兩個二元一次方程組成的方程組叫做二元一次方程組。適合一個二元一次方程的一組未知數的值,叫做這個二元一次方程的一個解。二元一次方程組中各個方程的公共解,叫做這個二元一次方程的解。
解二元一次方程組的方法:代入消元法/加減消元法。
2、不等式與不等式組
不等式:
①用符號」=「號連接的式子叫不等式。
②不等式的兩邊都加上或減去同一個整式,不等號的方向不變。
③不等式的兩邊都乘以或者除以一個正數,不等號方向不變。
④不等式的兩邊都乘以或除以同一個負數,不等號方向相反。
不等式的解集:
①能使不等式成立的未知數的值,叫做不等式的解。
②一個含有未知數的不等式的所有解,組成這個不等式的解集。
③求不等式解集的過程叫做解不等式。
一元一次不等式:左右兩邊都是整式,只含有一個未知數,且未知數的次數是1的不等式叫一元一次不等式。
一元一次不等式組:
①關於同一個未知數的幾個一元一次不等式合在一起,就組成了一元一次不等式組。
②一元一次不等式組中各個不等式的解集的公共部分,叫做這個一元一次不等式組的解集。
③求不等式組解集的過程,叫做解不等式組。
九年級數學 知識點歸納
一、平行線分線段成比例定理及其推論:
1.定理:三條平行線截兩條直線,所得的對應線段成比例。
2.推論:平行於三角形一邊的直線截其他兩邊(或兩邊的延長線)所得的對應線段成比例。
3.推論的逆定理:如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,那麼這條線段平行於三角形的第三邊。
二、相似預備定理:
平行於三角形的一邊,並且和其他兩邊相交的直線,截得的三角形的三邊與原三角形三邊對應成比例。
三、相似三角形:
1.定義:對應角相等,對應邊成比例的三角形叫做相似三角形。
2.性質:(1)相似三角形的對應角相等;
(2)相似三角形的對應線段(邊、高、中線、角平分線)成比例;
(3)相似三角形的周長比等於相似比,面積比等於相似比的平方。
說明:①等高三角形的面積比等於底之比,等底三角形的面積比等於高之比;②要注意兩個圖形元素的對應。
3.判定定理:
(1)兩角對應相等,兩三角形相似;
(2)兩邊對應成比例,且夾角相等,兩三角形相似;
(3)三邊對應成比例,兩三角形相似;
(4)如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角對應成比例,那麼這兩個直角三角形相似。
初三數學復習知識點
有理數、整式的加減、一元一次方程、圖形的初步認識。
(1)有理數:是初中數學的基礎內容,中考試題中分值約為3-6分,多以選擇題,填空題,計算題的形式出現,難易度屬於簡單。
【考察內容】復數以及混合運算(期中、期末必考計算)數軸、相反數、絕對值和倒數(選擇、填空)。
(2)整式的加減:中考試題中分值約為4分,題型以選擇和填空題為主,難易度屬於易。
【考察內容】
①整式的概念和簡單的運算,主要是同類項的概念和化簡求值
②完全平方公式,平方差公式的幾何意義
③利用提公因式法和公式法分解因式。
(3)一元一次方程:是初一學習重點內容,主要學習內容有(歸納、 總結 、延伸)應用題思維、步驟、文字題,根據已知條件求未知。中考分值約為1-3分,題型主要以選擇和填空題為主,極少出現簡答題,難易度為易。
【考察內容】
①方程及方程解的概念
②根據題意列一元一次方程
③解一元一次方程。題型:追擊、相遇、時間速度路程的關系、打折銷售、利潤公式。
(4)幾何:角和線段,為下冊學三角形打基礎
相交線和平行線、實數、平面直角坐標系、二元一次方程組、不等式和不等式組和資料庫的收集整理與描述。
(1)相交線和平行線:相交線和平行線是歷年中考中常見的考點。通常以填空,選擇題形式出現。分值為3-4分,難易度為易。
【考察內容】
①平行線的性質(公理)
②平行線的判別方法
③構造平行線,利用平行線的性質解決問題。
(2)平面直角坐標系:中考試題中分值約為3-4分,題型以選擇,填空為主,難易度屬於易。
【考察內容】
①考察平面直角坐標系內點的坐標特徵
②函數自變數的取值范圍和球函數的值
③考察結合圖像對簡單實際問題中的函數關系進行分析。
(3)二元一次方程組:中考分值約為3-6分,題型主要以選擇,解答為主,難易度為中。
【考察內容】
①方程組的解法,解方程組
②根據題意列二元一次方程組解經濟問題。
(4)不等式和不等式組:中考試題中分值約為3-8分,選擇,填空,解答題為主。
【考察內容:】
①一元一次不等式(組)的解法,不等式(組)解集的數軸表示,不等式(組)的整數解等,題型以選擇,填空為主。
②列不等式(組)解決經濟問題,調配問題等,主要以解答題為主。
③留意不等式(組)和函數圖像的結合問題。
(5)資料庫的收集整理與描述
分值一般在6-10分,題型近幾年主要以解答題出現,偶爾以選擇填空出現。難易度為中。
初三數學上冊課本知識點總結相關 文章 :
★ 九年級數學上冊重要知識點總結
★ 初三上冊數學知識點總結
★ 初三數學知識點上冊總結歸納
★ 九年級上冊數學知識點歸納整理
★ 初三上冊數學知識點歸納
★ 九年級上冊數學知識點歸納
★ 初中數學必備知識點總結初三數學上冊一二章知識點
★ 初三數學上學期學習總結
★ 九年級上冊數學知識點
★ 初三上冊數學知識點
var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();