A. 高中常用的數學符號有哪些
數學符號 如加號(+),減號(-),乘號(×或?),除號(÷或/),兩個集合的並集(∪),交集(∩),根號(√),對數(log,lg,ln),比(:),微分(dx),積分(∫),曲線積分(∬)等。 關系符號 如「=」是等號,「≈」是近似符號,「≠」是不等號,「>」是大於符號,「<」是小於符號,「≣」是大於或等於符號(也可寫作「≤」),「≢」是小於或等於符號(也可寫作「≥」),。「→ 」表示變數變化的趨勢,「∽」是相似符號,「≌」是全等號,「∠」是平行符號,「⊥」是垂直符號,「∝」是成正比符號,(沒有成反比符號,但可以用成正比符號配倒數當作成反比)「∈」是屬於符號,「?」是「包含」符號等。 結合符號 如小括弧「()」中括弧「[]」,大括弧「{}」橫線「—」 性質符號 如正號「+」,負號「-」,絕對值符號「| |」正負號「±」 省略符號 如三角形(△),直角三角形(Rt△),正弦(sin),餘弦(cos),x的函數(f(x)),極限(lim),角(∟), ∮因為,(一個腳站著的,站不住) ∭所以,(兩個腳站著的,能站住) 總和(∑),連乘(∏),從n個元素中每次取出r個元素所有不同的組合數(C(r)(n) ),冪(A,Ac,Aq,x^n)等。 排列組合符號 C-組合數 A-排列數 N-元素的總個數 R-參與選擇的元素個數 n!-階乘 ,如5!=5×4×3×2×1=120 C-Combination- 組合 A-Arrangement-排列 φ 空集 ∈ 屬於(不屬於) |A| 集合A的點數 包含 (或下面加 ≠) 真包含 ∪ 集合的並運算 ∩ 集合的交運算 a ∈ A a屬於集合A [a] 元素a 產生的循環群 I (i大寫) 環,理想 Z/(n) 模n的同餘類集合 r(R) 關系 R的自反閉包 s(R) 關系 的對稱閉包
f:X→Y f是X到Y的函數 GCD(x,y) x,y最大公約數 LCM(x,y) x,y最小公倍數 C 復數集 N
自然數集: N* 正自然數集 P 素數集 Q 有理數集 R 實數集 Z 整數集 數學符號的意義 符號(Symbol) 意義(Meaning) = 等於 is equal to ≠ 不等於 is not equal to < 小於 is less than > 大於 is greater than || 平行 is parallel to ≣ 大於等於 is greater than or equal to ≢ 小於等於 is less than or equal to ≡ 恆等於或同餘 π 圓周率 |x| 絕對值 absolute value of X ∽ 相似 is similar to ≌ 全等 is equal to(especially for triangle ) >> 遠遠大於號 << 遠遠小於號 ∞ 無窮大 ln(x) 以e為底的對數 lg(x) 以10為底的對數 floor(x) 上取整函數 ceil(x) 下取整函數 x mod y 求余數 x - floor(x) 小數部分 ∫f(x)dx 不定積分 ∫[a:b]f(x)dx a到b的定積分
B. 高中數學所有符號及讀法
+ plus 加號;正號
- minus 減號;負號
± plus or minus 正負號
× is multiplied by 乘號
÷ is divided by 除號
= is equal to 等於號
≠ is not equal to 不等於號
≡ is equivalent to 全等於號
≌ is approximately equal to 約等於
≈ is approximately equal to 約等於號
< is less than 小於號
> is more than 大於號
≤ is less than or equal to 小於或等於
≥ is more than or equal to 大於或等於
% per cent 百分之…
∞ infinity 無限大號
√ (square) root 平方根
X squared X的平方
X cubed X的立方
∵ since; because 因為
∴ hence 所以
∠ angle 角
⌒ semicircle 半圓
⊙ circle 圓
○ circumference 圓周
△ triangle 三角形
⊥ perpendicular to 垂直於
∪ intersection of 並,合集
∩ union of 交,通集
∫ the integral of …的積分
∑ (sigma) summation of 總和
° degree 度
′ minute 分
〃 second 秒
C. 高中數學常用符號
1 幾何符號
⊥ ‖ ∠ ⌒ ⊙ ≡ ≌ △
2 代數符號
∝ ∧ ∨ ~ ∫ ≠ ≤ ≥ ≈ ∞ ∶
3運算符號
× ÷ √ ±
4集合符號
∪ ∩ ∈
5特殊符號
∑ π(圓周率)
6推理符號
|a| ⊥ ∽ △ ∠ ∩ ∪ ≠ ≡ ± ≥ ≤ ∈ ←
↑ → ↓ ↖ ↗ ↘ ↙ ‖ ∧ ∨
&; §
① ② ③ ④ ⑤ ⑥ ⑦ ⑧ ⑨ ⑩
Γ Δ Θ ∧ Ξ Ο ∏ ∑ Φ Χ Ψ Ω
α β γ δ ε ζ η θ ι κ λ μ ν
ξ ο π ρ σ τ υ φ χ ψ ω
Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ Ⅵ Ⅶ Ⅷ Ⅸ Ⅹ Ⅺ Ⅻ
ⅰ ⅱ ⅲ ⅳ ⅴ ⅵ ⅶ ⅷ ⅸ ⅹ
∈ ∏ ∑ ∕ √ ∝ ∞ ∟ ∠ ∣ ‖ ∧ ∨ ∩ ∪ ∫ ∮
∴ ∵ ∶ ∷ ∽ ≈ ≌ ≈ ≠ ≡ ≤ ≥ ≤ ≥ ≮ ≯ ⊕ ⊙ ⊥
⊿ ⌒ ℃
指數0123:�0�2�0�1�0�5�0�6
符號 意義
∞ 無窮大
PI 圓周率
|x| 函數的絕對值
∪ 集合並
∩ 集合交
≥ 大於等於
≤ 小於等於
≡ 恆等於或同餘
ln(x) 自然對數
lg(x) 以2為底的對數
log(x) 常用對數
floor(x) 上取整函數
ceil(x) 下取整函數
x mod y 求余數
{x} 小數部分 x - floor(x)
∫f(x)δx 不定積分
∫[a:b]f(x)δx a到b的定積分
[P] P為真等於1否則等於0
∑[1≤k≤n]f(k) 對n進行求和,可以拓廣至很多情況
如:∑[n is prime][n < 10]f(n)
∑∑[1≤i≤j≤n]n^2
lim f(x) (x->?) 求極限
f(z) f關於z的m階導函數
C(n:m) 組合數,n中取m
P(n:m) 排列數
m|n m整除n
m⊥n m與n互質
a ∈ A a屬於集合A
#A 集合A中的元素個數
∑(n=p,q)f(n) 表示f(n)的n從p到q逐步變化對f(n)的連加和,
如果f(n)是有結構式,f(n)應外引括弧;
∑(n=p,q ; r=s,t)f(n,r) 表示 ∑(r=s,t)[∑(n=p,q)f(n,r)],
如果f(n,r)是有結構式,f(n,r)應外引括弧;
∏(n=p,q)f(n) 表示f(n)的n從p到q逐步變化對f(n)的連乘積,
如果f(n)是有結構式,f(n)應外引括弧;
∏(n=p,q ; r=s,t)f(n,r) 表示 ∏(r=s,t)[∏(n=p,q)f(n,r)],
如果f(n,r)是有結構式,f(n,r)應外引括弧;
lim(x→u)f(x) 表示 f(x) 的 x 趨向 u 時的極限,
如果f(x)是有結構式,f(x)應外引括弧;
lim(y→v ; x→u)f(x,y) 表示 lim(y→v)[lim(x→u)f(x,y)],
如果f(x,y)是有結構式,f(x,y)應外引括弧;
∫(a,b)f(x)dx 表示對 f(x) 從 x=a 至 x=b 的積分,
如果f(x)是有結構式,f(x)應外引括弧;
∫(c,d ; a,b)f(x,y)dxdy 表示∫(c,d)[∫(a,b)f(x,y)dx]dy,
如果f(x,y)是有結構式,f(x,y)應外引括弧;
∫(L)f(x,y)ds 表示 f(x,y) 在曲線 L 上的積分,
如果f(x,y)是有結構式,f(x,y)應外引括弧;
∫∫(D)f(x,y,z)dσ 表示 f(x,y,z) 在曲面 D 上的積分,
如果f(x,y,z)是有結構式,f(x,y,z)應外引括弧;
∮(L)f(x,y)ds 表示 f(x,y) 在閉曲線 L 上的積分,
如果f(x,y)是有結構式,f(x,y)應外引括弧;
∮∮(D)f(x,y,z)dσ 表示 f(x,y,z) 在閉曲面 D 上的積分,
如果f(x,y)是有結構式,f(x,y)應外引括弧;
∪(n=p,q)A(n) 表示n從p到q之A(n)的並集,
如果A(n)是有結構式,A(n)應外引括弧;
∪(n=p,q ; r=s,t)A(n,r) 表示 ∪(r=s,t)[∪(n=p,q)A(n,r)],
如果A(n,r)是有結構式,A(n,r)應外引括弧;
∩(n=p,q)A(n) 表示n從p到q逐步變化對A(n)的交集,
如果A(n)是有結構式,A(n)應外引括弧;
∩(n=p,q ; r=s,t)A(n,r) 表示 ∩(r=s,t)[∩(n=p,q)A(n,r)],
如果A(n,r)是有結構式,A(n,r)應外引括弧;
D. 高中數學符號△(德爾塔 )是什麼意思
1.△是希臘字母,是數學、物理、天文,化學等學科的常用符號。delta(希臘字母)Delta是第四個希臘字母的讀音,其大寫為Δ,小寫為δ.在數學或者物理學中大寫的Δ用來表示增量符號. 而小寫δ通常在高等數學中用於表示變數或者符。△是在希臘字母中一個大寫字母,其小寫形式為δ。
2.數學符號Δ,中文名稱為德爾塔符號,英文名稱為Delta,在數學或者物理學中大寫的Δ用來表示增量符號,其中,一元二次方程的求根公式中就有出現.
3.德爾塔 (△) 在速度方面是指在一段時間內速度的變化量 而且△v=△x/△t是錯誤的,正確的為v=△x/△t △v一般用於求加速度a=△v/△t 而且△v是一個矢量(包括大小和方向)
4.快捷鍵輸入「△」在Excel操作界面上方找到操作欄菜單後,使用快捷鍵「alt+41463」輸入點擊插入,輸入「△」符號完成。
E. 高中常用的數學符號有哪些(要有解析,要精簡)
1、幾何符號
⊥ ∥ ∠ ⌒ ⊙ ≡ ≌ △
2、代數符號
∝ ∧ ∨ ~ ∫ ≠ ≤ ≥ ≈ ∞ ∶
3、運算符號
如加號(+),減號(-),乘號(×或·),除號(÷或/),兩個集合的並集(∪),交集(∩),根號(√),對數(log,lg,ln),比(:),微分(dx),積分(∫),曲線積分(∮)等。
4、集合符號
∪ ∩ ∈
5、特殊符號
∑ π(圓周率)
6、推理符號
|a| ⊥ ∽ △ ∠ ∩ ∪ ≠ ≡ ± ≥ ≤ ∈ ←
↑ → ↓ ↖ ↗ ↘ ↙ ∥ ∧ ∨
&; §
① ② ③ ④ ⑤ ⑥ ⑦ ⑧ ⑨ ⑩
Γ Δ Θ Λ Ξ Ο Π Σ Φ Χ Ψ Ω
α β γ δ ε ζ η θ ι κ λ μ ν
ξ ο π ρ σ τ υ φ χ ψ ω
Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ Ⅵ Ⅶ Ⅷ Ⅸ Ⅹ Ⅺ Ⅻ
ⅰ ⅱ ⅲ ⅳ ⅴ ⅵ ⅶ ⅷ ⅸ ⅹ
∈ ∏ ∑ ∕ √ ∝ ∞ ∟ ∠ ∣ ∥ ∧ ∨ ∩ ∪ ∫ ∮
∴ ∵ ∶ ∷ ∽ ≈ ≌ ≒ ≠ ≡ ≤ ≥ ≦ ≧ ≮ ≯ ⊕ ⊙ ⊥
⊿ ⌒ ℃
指數0123:o123
7、數量符號
如:i,2+i,a,x,自然對數底e,圓周率π。
8、關系符號
如「=」是等號,「≈」是近似符號,「≠」是不等號,「>」是大於符號,「<」是小於符號,「≥」是大於或等於符號(也可寫作「≮」),「≤」是小於或等於符號(也可寫作「≯」),。「→ 」表示變數變化的趨勢,「∽」是相似符號,「≌」是全等號,「∥」是平行符號,「⊥」是垂直符號,「∝」是成正比符號,(沒有成反比符號,但可以用成正比符號配倒數當作成反比)「∈」是屬於符號,「??」是「包含」符號等。
9、結合符號
如小括弧「()」中括弧「[]」,大括弧「{}」橫線「—」
10、性質符號
如正號「+」,負號「-」,絕對值符號「| |」正負號「±」
11、省略符號
如三角形(△),直角三角形(Rt△),正弦(sin),餘弦(cos),x的函數(f(x)),極限(lim),角(∠),
∵因為,(一個腳站著的,站不住)
∴所以,(兩個腳站著的,能站住) 總和(∑),連乘(∏),從n個元素中每次取出r個元素所有不同的組合數(C(r)(n) ),冪(A,Ac,Aq,x^n)等。
12、排列組合符號
C-組合數
A-排列數
N-元素的總個數
R-參與選擇的元素個數
!-階乘 ,如5!=5×4×3×2×1=120
C-Combination- 組合
A-Arrangement-排列
13、離散數學符號
├ 斷定符(公式在L中可證)
╞ 滿足符(公式在E上有效,公式在E上可滿足)
┐ 命題的「非」運算
∧ 命題的「合取」(「與」)運算
∨ 命題的「析取」(「或」,「可兼或」)運算
→ 命題的「條件」運算
A<=>B 命題A 與B 等價關系
A=>B 命題 A與 B的蘊涵關系
A* 公式A 的對偶公式
wff 合式公式
iff 當且僅當
↑ 命題的「與非」 運算( 「與非門」 )
↓ 命題的「或非」運算( 「或非門」 )
□ 模態詞「必然」
◇ 模態詞「可能」
φ 空集
∈ 屬於(??不屬於)
P(A) 集合A的冪集
|A| 集合A的點數
R^2=R○R [R^n=R^(n-1)○R] 關系R的「復合」
(或下面加 ≠) 真包含
∪ 集合的並運算
∩ 集合的交運算
- (~) 集合的差運算
〡 限制
[X](右下角R) 集合關於關系R的等價類
A/ R 集合A上關於R的商集
[a] 元素a 產生的循環群
I (i大寫) 環,理想
Z/(n) 模n的同餘類集合
r(R) 關系 R的自反閉包
s(R) 關系 的對稱閉包
CP 命題演繹的定理(CP 規則)
EG 存在推廣規則(存在量詞引入規則)
ES 存在量詞特指規則(存在量詞消去規則)
UG 全稱推廣規則(全稱量詞引入規則)
US 全稱特指規則(全稱量詞消去規則)
R 關系
r 相容關系
R○S 關系 與關系 的復合
domf 函數 的定義域(前域)
ranf 函數 的值域
f:X→Y f是X到Y的函數
GCD(x,y) x,y最大公約數
LCM(x,y) x,y最小公倍數
aH(Ha) H 關於a的左(右)陪集
Ker(f) 同態映射f的核(或稱 f同態核)
[1,n] 1到n的整數集合
d(u,v) 點u與點v間的距離
d(v) 點v的度數
G=(V,E) 點集為V,邊集為E的圖
W(G) 圖G的連通分支數
k(G) 圖G的點連通度
△(G) 圖G的最大點度
A(G) 圖G的鄰接矩陣
P(G) 圖G的可達矩陣
M(G) 圖G的關聯矩陣
C 復數集
N 自然數集(包含0在內)
N* 正自然數集
P 素數集
Q 有理數集
R 實數集
Z 整數集
Set 集范疇
Top 拓撲空間范疇
Ab 交換群范疇
Grp 群范疇
Mon 單元半群范疇
Ring 有單位元的(結合)環范疇
Rng 環范疇
CRng 交換環范疇
R-mod 環R的左模範疇
mod-R 環R的右模範疇
Field 域范疇
Poset 偏序集范疇
+ plus 加號;正號
- minus 減號;負號
± plus or minus 正負號
× is multiplied by 乘號
÷ is divided by 除號
= is equal to 等於號
≠ is not equal to 不等於號
≡ is equivalent to 全等於號
≌ is approximately equal to 約等於
≈ is approximately equal to 約等於號
< is less than 小於號
> is more than 大於號
≤ is less than or equal to 小於或等於
≥ is more than or equal to 大於或等於
% per cent 百分之…
∞ infinity 無限大號
√ (square) root 平方根
X squared X的平方
X cubed X的立方
∵ since; because 因為
∴ hence 所以
∠ angle 角
⌒ semicircle 半圓
⊙ circle 圓
○ circumference 圓周
△ triangle 三角形
⊥ perpendicular to 垂直於
∪ intersection of 並,合集
∩ union of 交,通集
∫ the integral of …的積分
∑ (sigma) summation of 總和
° degree 度
′ minute 分
〃 second 秒
# number …號
@ at 單價