1. 數學裡面什麼是導數怎麼理解導數
導數(Derivative)是微積分中的重要基礎概念。當自變數的增量趨於零時,因變數的增量與自變數的增量之商的極限。一個函數存在導數時,稱這個函數可導或者可微分。可導的函數一定連續。不連續的函數一定不可導。導數實質上就是一個求極限的過程,導數的四則運演算法則來源於極限的四則運演算法則。
右上圖為函數y=(x) 的圖象,函數在x_0處的導數′(x_0) = lim{Δx→0} [(x_0 +Δx) -(x_0)] /Δx。如果函數在連續區間上可導,則函數在這個區間上存在導函數,記作′(x)或 dy/ dx。
導數定義
一、導數第一定義
設函數 y = f(x) 在點 x0 的某個鄰域內有定義當自變數x 在 x0 處有增量△x ( x0 + △x 也在該鄰域內 ) 時相應地函數取得增量 △y = f(x0 + △x) - f(x0) 如果 △y 與 △x 之比當 △x→0 時極限存在則稱函數 y = f(x) 在點 x0 處可導並稱這個極限值為函數 y = f(x) 在點 x0 處的導數記為 f'(x0) ,即導數第一定義
二、導數第二定義
設函數 y = f(x) 在點 x0 的某個鄰域內有定義當自變數x 在 x0 處有變化 △x ( x - x0 也在該鄰域內 ) 時相應地函數變化 △y = f(x) - f(x0) 如果 △y 與 △x 之比當 △x→0 時極限存在則稱函數 y = f(x) 在點 x0 處可導並稱這個極限值為函數 y = f(x) 在點 x0 處的導數記為 f'(x0) ,即導數第二定義
三、導函數與導數
如果函數 y = f(x) 在開區間I內每一點都可導就稱函數f(x)在區間 I 內可導。這時函數 y = f(x) 對於區間 I 內的每一個確定的 x 值都對應著一個確定的導數這就構成一個新的函數稱這個函數為原來函數 y = f(x) 的導函數記作 y', f'(x), dy/dx, df(x)/dx。導函數簡稱導數。
折疊編輯本段導數的起源
一.早期導數概念----特殊的形式
大約在1629年法國數學家費馬研究了作曲線的切線和求函數極值的方法1637年左右他寫一篇手稿《求最大值與最小值的方法》。在作切線時他構造了差分f(A+E)-f(A),發現的因子E就是我們所說的導數f'(A)。
二.17世紀----廣泛使用的「流數術」
17世紀生產力的發展推動了自然科學和技術的發展在前人創造性研究的基礎上大數學家牛頓、萊布尼茨等從不同的角度開始系統地研究微積分。牛頓的微積分理論被稱為「流數術」;他稱變數為流量,稱變數的變化率為流數,相當於我們所說的導數。牛頓的有關「流數術」的主要著作是《求曲邊形面積》、《運用無窮多項方程的計演算法》和《流數術和無窮級數》流數理論的實質概括為他的重點在於一個變數的函數而不在於多變數的方程在於自變數的變化與函數的變化的比的構成最在於決定這個比當變化趨於零時的極限。
三.19世紀導數----逐漸成熟的理論
1750年達朗貝爾在為法國科學家院出版的《網路全書》第五版寫的「微分」條目中提出了關於導數的一種觀點可以用現代符號簡單表示{dy/dx)=lim(oy/ox)。1823年柯西在他的《無窮小分析概論》中定義導數如果函數y=f(x)在變數x的兩個給定的界限之間保持連續並且我們為這樣的變數指定一個包含在這兩個不同界限之間的值那麼是使變數得到一個無窮小增量。19世紀60年代以後魏爾斯特拉斯創造了ε-δ語言對微積分中出現的各種類型的極限重加表達導數的定義也就獲得了今天常見的形式。
四.實無限將異軍突起微積分第二輪初等化或成為可能 微積分學理論基礎大體可以分為兩個部分。一個是實無限理論即無限是一個具體的東西一種真實的存在另一種是潛無限指一種意識形態上的過程比如無限接近。
就歷史來看兩種理論都有一定的道理。其中實無限用了150年後來極限論就是現在所使用的。
光是電磁波還是粒子是一個物理學長期爭論的問題後來由波粒二象性來統一。微積分無論是用現代極限論還是150年前的理論都不是最好的手段。
折疊編輯本段導函數
一般地假設一元函數 y=f(x )在 點x0的某個鄰域N(x0δ)內有定義當自變數取的增量Δx=x-x0時函數相應增量為 △y=f(x0+△x)-f(x0)。若函數增量△y與自變數增量△x之比當△x→0時的極限存在且有限就說函數f(x)在x0點可導並將這個極限稱之為f在x0點的導數或變化率。
「點動成線」若函數f在區間I 的每一點都可導便得到一個以I為定義域的新函數記作 f'(x) 或y'稱之為f的導函數不能簡稱為導數.
折疊編輯本段幾何意義
函數y=fx在x0點的導數f'x0的幾何意義表示函數曲線在P0[x導數的幾何意義0fx0] 點的切線斜率
導數的幾何意義是該函數曲線在這一點上的切線斜率.
折疊編輯本段科學應用
導數與物理幾何代數關系密切.在幾何中可求切線在代數中可求瞬時變化率在物理中可求速度加速度.
導數亦名紀數、微商微分中的概念是由速度變化問題和曲線的切線問題矢量速度的方向而抽象出來的數學概念.又稱變化率.
如一輛汽車在10小時內走了 600千米它的平均速度是60千米/小時.但在實際行駛過程中是有快慢變化的不都是60千米/小時.為了較好地反映汽車在行駛過程中的快慢變化情況可以縮短時間間隔設汽車所在位置s與時間t的關系為: s=ft
那麼汽車在由時刻t0變到t1這段時間內的平均速度是:
[f(t1)-f(t0)]/[t1-t0]
當 t1與t0無限趨近於零時汽車行駛的快慢變化就不會很大瞬時速度就近似等於平均速度 .
自然就把當t1→t0時的極限lim[f(t1)-f(t0)]/[t1-t0] 作為汽車在時刻t0的瞬時速度這就是通常所說的速度.這實際上是由平均速度類比到瞬時速度的過程 如我們駕駛時的限「速」 指瞬時速度
2. 數學導數有什麼作用,實際用途是什麼
導數作用:
1.
求一些實際問題的最大值與最小值
2.還可以求切線的斜率。
導數的定義,我們應注意以下三點:
(1)△x是自變數x在
x0處的增量(或改變數).
(2)導數定義中還包含了可導或可微的概念,如果△x→0時,△y
/△x有極限,那麼函數y=f(x)在點
x0處可導或可微,才能得到f(x)在點
x0處的導數.
(3)如果函數y=f(x)在點
x0處可導,那麼函數y=f(x)在點x0
處連續(由連續函數定義可知).反之不一定成立.例如函數y=|x|在點x=0處連續,但不可導.
3. 數學中「導數」代表什麼
導數(Derivative)是微積分中的重要基礎概念。當自變數的增量趨於零時,因變數的增量與自變數的增量之商的極限。在一個函數存在導數時,稱這個函數可導或者可微分。可導的函數一定連續。不連續的函數一定不可導。導數實質上就是一個求極限的過程,導數的四則運演算法則來源於極限的四則運演算法則。
4. 高等數學導數的定義
導數(Derivative),也叫導函數值。又名微商,是微積分中的重要基礎概念。當函數y=f(x)的自變數x在一點x0上產生一個增量Δx時,函數輸出值的增量Δy與自變數增量Δx的比值在Δx趨於0時的極限a如果存在,a即為在x0處的導數,記作f'(x0)或df(x0)/dx。
導數是函數的局部性質。一個函數在某一點的導數描述了這個函數在這一點附近的變化率。如果函數的自變數和取值都是實數的話,函數在某一點的導數就是該函數所代表的曲線在這一點上的切線斜率。導數的本質是通過極限的概念對函數進行局部的線性逼近。例如在運動學中,物體的位移對於時間的導數就是物體的瞬時速度。
不是所有的函數都有導數,一個函數也不一定在所有的點上都有導數。若某函數在某一點導數存在,則稱其在這一點可導,否則稱為不可導。然而,可導的函數一定連續;不連續的函數一定不可導。
對於可導的函數f(x),x↦f'(x)也是一個函數,稱作f(x)的導函數(簡稱導數)。尋找已知的函數在某點的導數或其導函數的過程稱為求導。實質上,求導就是一個求極限的過程,導數的四則運演算法則也來源於極限的四則運演算法則。反之,已知導函數也可以倒過來求原來的函數,即不定積分。微積分基本定理說明了求原函數與積分是等價的。求導和積分是一對互逆的操作,它們都是微積分學中最為基礎的概念。
中文名
導數
外文名
Derivative
提出者
牛頓、萊布尼茨
提出時間
17世紀
應用領域
數學(微積分學)、物理學
限時折扣
高中數學從入門到精通:導數(高考數學壓軸題從入門到精通)
共82集
2.9萬熱度
限時折扣
導數中「參數分類」的四大標准(含講義)
共20集
4392熱度
快速
導航
定義
公式
導數與函數的性質
導數種別
應用
歷史沿革
起源
大約在1629年,法國數學家費馬研究了作曲線的切線和求函數極值的方法;1637年左右,他寫一篇手稿《求最大值與最小值的方法》。在作切線時,他構造了差分f(A+E)-f(A),發現的因子E就是我們所說的導數f'(A)。[1]
發展
17世紀生產力的發展推動了自然科學和技術的發展,在前人創造性研究的基礎上,大數學家牛頓、萊布尼茨等從不同的角度開始系統地研究微積分。牛頓的微積分理論被稱為「流數術」,他稱變數為流量,稱變數的變化率為流數,相當於我們所說的導數。牛頓的有關「流數術」的主要著作是《求曲邊形面積》、《運用無窮多項方程的計演算法》和《流數術和無窮級數》,流數理論的實質概括為:他的重點在於一個變數的函數而不在於多變數的方程;在於自變數的變化與函數的變化的比的構成;最在於決定這個比當變化趨於零時的極限。[1]
成熟
1750年達朗貝爾在為法國科學家院出版的《網路全書》第四版寫的「微分」條目中提出了關於導數的一種觀點,可以用現代符號簡單表示: 。
1823年,柯西在他的《無窮小分析概論》中定義導數:如果函數y=f(x)在變數x的兩個給定的界限之間保持連續,並且我們為這樣的變數指定一個包含在這兩個不同界限之間的值,那麼是使變數得到一個無窮小增量。19世紀60年代以後,魏爾斯特拉斯創造了ε-δ語言,對微積分中出現的各種類型的極限重加表達。
微積分學理論基礎,大體可以分為兩個部分。一個是實無限理論,即無限是一個具體的東西,一種真實的存在;另一種是潛無限理論,指一種意識形態上的過程,比如無限接近。
就數學歷史來看,兩種理論都有一定的道理,實無限就使用了150年。
5. 導數的導數有什麼意義
導數的導數即二階導數,其在數學和物化上都有重要意義。
1.在數學上,二階導數可用於判斷函數圖像的凸凹性。例如y=x^3,則y′=3x^2,y"=6ⅹ,即當x﹥0時,y"﹥0,此時函數圖像為凹函數,當x<0時,y"<0,此時函數圖像為凸函數。
2.在物理中,二階導數反映的是加速度。因為位移S對時間t的一階導數即為速度v,v再對時間t的導數就是二階導數,為加速度。
6. 導數的意義是什麼
物理意義:經常表示瞬間的變化率,在物理量中最常用的有瞬時速度和瞬時加速度。導數的幾何意義:表示曲線在點處的切線的斜率。導數的本質是通過極限的概念對函數進行局部的線性逼近。
當函數y=f(x)的自變數x在一點x0上產生一個增量Δx時,函數輸出值的增量Δy與自變數增量Δx的比值在Δx趨於0時的極限a如果存在,a即為在x0處的導數,記作f'(x0)或df(x0)/dx。
導數與函數的性質:
1、單調性
(1)若導數大於零,則單調遞增;若導數小於零,則單調遞減;導數等於零為函數駐點,不一定為極值點。需代入駐點左右兩邊的數值求導數正負判斷單調性。
(2)若已知函數為遞增函數,則導數大於等於零;若已知函數為遞減函數,則導數小於等於零。
2、凹凸性
可導函數的凹凸性與其導數的單調性有關。如果函數的導函數在某個區間上單調遞增,那麼這個區間上函數是向下凹的,反之則是向上凸的。
如果二階導函數存在,也可以用它的正負性判斷,如果在某個區間上恆大於零,則這個區間上函數是向下凹的,反之這個區間上函數是向上凸的。曲線的凹凸分界點稱為曲線的拐點。
7. 導數的導數是什麼意思什麼含義什麼作用(具體點)
含義:導數的本意是「差分」,英文符號D.
導數的數學含義是兩個變數的變化量之比;幾何含義是曲線上點的斜率。
作用:1.
判斷函數的單調區間:d>0,單調遞增;d<0,單調遞減;
2.判斷曲線形狀:二階導小於等於0,上凸;二階導大於等於0
上凹;
3.求極值和最值:一階導數d=0,可能為極值點;同時二階導數>0
,極小值點;
同時二階導數<0,
為極大值點;
8. 數學中解題有時要求導 求導的實質是什麼 為什麼要求導
導數的定義是過該點的直線的斜率
在做題中有時要求導,也是為了解答起來方便,導數的應用比如求一條2次以上函數的曲線的切線,求一個函數在某個區間上的極大值,極小值,判斷函數的一些性質等等,尤其以判斷函數的性質最為重要,導函數也是函數,只不過研究它比研究原函數方便多,因為它已經被降冪。