❶ 初中數學考試卷最後的大題一般的做題技巧
一般最後一道大題會分成幾個小題,難度由易到難,所以第一題一般是送分的,一定要做,第一小題的結果可能會運用到第二小題。考試時如有時間多餘,就可往下攻克,沒有時間的話可以放棄,把簡單的分先抓住。
❷ 用A3紙製作初中數學試卷怎麼做
word-工具欄裡面有「插入」,插入裡面選擇公式,再挑選你需要的公式模型。然後填充這樣的模型,把公式拖到你想要的位置。跟添加圖片一樣啦。
做成試卷:
頁面布局-
紙張大小:A3
紙張方向:橫向
分欄:兩欄
就行啦
❸ 如何命制初中數學試卷
第一步:羅列需要考的知識點
第二步:根據知識點開始收集題目
方式一:利用一些網站,可以自己組卷。如:智學網,學科網
方式二:利用其他的卷子,找類似的題目,形成自己的卷子。
❹ 做初中數學題的技巧方法
大題是高考數學科目的重要組成部分,也是比分佔得很重的一部分,考生需要掌握解題技巧,才能正確答題,那麼接下來給大家分享一些關於做初中數學題的技巧 方法 ,希望對大家有所幫助。
做初中數學題要分類討論題
分類討論在數學題中經常以最後壓軸題的方式出現,以下幾點是需要大家注意分類討論的:
1、熟知直角三角形的直角,等腰三角形的腰與角以及圓的對稱性,根據圖形的特殊性質,找准討論對象,逐一解決。在探討等腰或直角三角形存在時,一定要按照一定的原則,不要遺漏,最後要綜合。
2、討論點的位置一定要看清點所在的范圍,是在直線上,還是在射線或者線段上。
3、圖形的對應關系多涉及到三角形的全等或相似問題,對其中可能出現的有關角、邊的可能對應情況加以分類討論。
4、代數式變形中如果有絕對值、平方時,裡面的數開出來要注意正負號的取捨。
5、考查點的取值情況或范圍。這部分多是考查自變數的取值范圍的分類,解題中應十分注意性質、定理的使用條件及范圍。
6、函數題目中如果說函數圖象與坐標軸有交點,那麼一定要討論這個交點是和哪一個坐標軸的哪一半軸的交點。
7、由動點問題引出的函數關系,當運動方式改變後(比如從一條線段移動到另一條線段)時,所寫的函數應該進行分段討論。
值得注意的是:在列出所有需要討論的可能性之後,要仔細審查是否每種可能性都會存在,是否有需要捨去的。
最常見的就是一元二次方程如果有兩個不等實根,那麼我們就要看看是不是這兩個根都能保留。
做初中數學題四個秘訣
切入點一:做不出、找相似,有相似、用相似
壓軸題牽涉到的知識點較多,知識轉化的難度較高。學生往往不知道該怎樣入手,這時往往應根據題意去尋找相似三角形。
切入點二:構造定理所需的圖形或基本圖形
在解決問題的過程中,有時添加輔助線是必不可少的,幾乎都遵循這樣一個原則:構造定理所需的圖形或構造一些常見的基本圖形。
切入點三:緊扣不變數
在圖形運動變化時,圖形的位置、大小、方向可能都有所改變,但在此過程中,往往有某兩條線段,或某兩個角或某兩個三角形所對應的位置或數量關系不發生改變。
切入點四:在題目中尋找多解的信息
圖形在運動變化,可能滿足條件的情形不止一種,也就是通常所說的兩解或多解,如何避免漏解也是一個令考生頭痛的問題。
其實多解的信息在題目中就可以找到,這就需要我們深度的挖掘題干,實際上就是反復認真的審題。
做初中數學題答題技巧
1、定位準確防止 「撿芝麻丟西瓜」
在心中一定要給壓軸題或幾個「難點」一個時間上的限制,如果超過你設置的上限,必須要停止,回頭認真檢查前面的題,盡量要保證選擇、填空萬無一失,前面的解答題盡可能的檢查一遍。
2、解數學壓軸題做一問是一問
第一問對絕大多數同學來說,不是問題;如果第一小問不會解,切忌不可輕易放棄第二小問。
過程會多少寫多少,因為數學解答題是按步驟給分的,字跡要工整,布局要合理;
盡量多用幾何知識,少用代數計算,盡量用三角函數,少在直角三角形中使用相似三角形的性質。
做初中數學題壓軸題技巧
縱觀全國各地的中考數學試卷,數學綜合題關鍵是第22題和23題,我們不妨把它分為函數型綜合題和幾何型綜合題。
(一)函數型綜合題
是先給定直角坐標系和幾何圖形,求(已知)函數的解析式(即在求解前已知函數的類型),然後進行圖形的研究,求點的坐標或研究圖形的某些性質。
初中已知函數有:
①一次函數(包括正比例函數)和常值函數,它們所對應的圖像是直線;
②反比例函數,它所對應的圖像是雙曲線;
③二次函數,它所對應的圖像是拋物線。求已知函數的解析式主要方法是待定系數法,關鍵是求點的坐標,而求點的坐標基本方法是幾何法(圖形法)和代數法(解析法)。
(二)幾何型綜合題
先給定幾何圖形,根據已知條件進行計算,然後有動點(或動線段)運動,對應產生線段、面積等的變化。
求對應的(未知)函數的解析式(即在沒有求出之前不知道函數解析式的形式是什麼)和求函數的定義域,最後根據所求的函數關系進行探索研究,一般有:
在什麼條件下圖形是等腰三角形、直角三角形、四邊形是菱形、梯形等;
探索兩個三角形滿足什麼條件相似等;
探究線段之間的位置關系等;
探索麵積之間滿足一定關系求x的值等和直線(圓)與圓的相切時求自變數的值等。
求未知函數解析式的關鍵是列出包含自變數和因變數之間的等量關系(即列出含有x、y的方程),變形寫成y=f(x)的形式。
一般有直接法(直接列出含有x和y的方程)和復合法(列出含有x和y和第三個變數的方程,然後求出第三個變數和x之間的函數關系式,代入消去第三個變數,得到y=f(x)的形式),當然還有參數法,這個已超出初中數學教學要求。
找等量關系的途徑在初中主要有利用勾股定理、平行線截得比例線段、三角形相似、面積相等方法。求定義域主要是尋找圖形的特殊位置(極限位置)和根據解析式求解。
而最後的探索問題千變萬化,但少不了對圖形的分析和研究,用幾何和代數的方法求出x的值。
在解數學綜合題時我們要做到:數形結合記心頭,大題小作來轉化,潛在條件不能忘,化動為靜多畫圖,分類討論要嚴密,方程函數是工具,計算推理要嚴謹,創新品質得提高。
做初中數學題的技巧方法相關 文章 :
★ 初中數學解題技巧與方法
★ 初中數學題中的小技巧整理
★ 初中數學學習方法以及技巧
★ 做數學選擇題的十種技巧
★ 初中數學學習方法總結,數學的六大方法技巧!
★ 初中數學解題方法大匯總
★ 初中數學題中的小技巧
★ 初中數學里常用的十種經典解題方法
★ 做題技巧數學初中解題方法總結
❺ 初中數學題,怎麼做
如圖
❻ 初中數學考試技巧和方法
初中數學考試技巧和方法如下:
一、初中生數學答題過程步驟技巧
1.良好的心態是答題成功的前提。對於很多初中階段的孩子而言,數學的難不在於題目本身,更大程度上是一種畏難的心態。很多孩子一碰到題幹部分略微偏長的題目,常常是題目還沒有讀完就已經「繳械投降」了。這一方面體現了學生讀題能力的欠缺,另一方面更說明心態在某種程度上對學生有較重要的心理暗示。
由此,數學教師在教學過程中在注重提高孩子們數學學習興趣的同時,更要注重孩子自信心的培養。
讓學生對於數學形成有良好的心理暗示——我覺得難的時候別人也會覺得難。同時,也要讓學生對於自己的數學學習形成這樣的一個概念——並不是做到滿分才是成功,而是每一次對於自己能力范圍內的題目都能做對就是一種成功,不懂的題目可以通過自己的努力下次完成。
2.科學的做題習慣避兔失誤丟分。經常能夠在學生口中聽到這樣的話——「那道題我會做的,可惜沒有時間了。」「都怪我粗心,題目要選錯誤的,我選成正確的。」"這道題的圖很明顯就是要證這兩個三角形全等,當時怎麼就沒看到。」
4.對未見過的題目要充滿信心。在每門課的中考中,遇到一到幾道未見過的,不會做的難題,這是正常現象;反之,如果一門課的題目,大家都會做,甚至都覺得很容易,這份考題就出糟了,它無法實現合理的區分度。
因此,考題中,若沒有一些大家未曾見過的「難題」,反而是不正常了不慌不躁,冷靜應對在考試時難免有些題目一時想不出,千萬不要鑽牛角尖,因為所有試題包含的知識、能力要求都在考綱范圍內,不妨先換一個題目做做,等一會兒往往就會豁然開朗了。
5.聯想所學知識答題。學生在考試的過程中,一定要站在出題人的角度去思考。對於那些非常簡單的"送分題」,可以省略這個步驟,但是同樣需要認真對待,因為往往簡單的題容易出錯,而且有時候看似簡單的題卻"暗藏玄機」,學生一不小心就會做錯。
對於那類思考良久後仍然無從下手的題來說,就需要學生站在命題人的角度思考。那麼在學生從命題人的角度思考過後,下一步需要做的就是聯想所學知識,結合所學知識解題。這個步驟可能會出現這樣幾種情況。
第一,學生知道考查的是什麼知識點,但是卻並不會用,也記不清所需的數學公式是什麼。這種情況下,沒有什麼好的辦法,只有系統地復習,牢固地記憶知識點,在做題的過程中去熟練公式。
第二,學生可能掌握了命題人想要考查的知識點,但是學生卻並沒有看出來。這就是典型的運用知識點不熟練,最有效的避免這種情況的方法就是大量練習,不斷通過習題來熟練知識點,從而熟悉把握同一知識點的不同運用方法。
可以說只有在系統把握了初中階段數學的知識脈絡之後,才能在考試中將能考慮的情況基本考慮到,可以更加靈活地去應對考試中出現的各種題型。
❼ 怎樣做數學試卷又快有對
數學考試我的經驗就是:
1,做試卷前一定要花一分鍾看一篇試卷,把會做不會做的瞭然於心
2,在保證正確率的情況下用最快速度將會做的做了,然後再去磨不會的(如果保證不了正確率,就重復驗證會做的,放棄不會的,沒時間糾結的)
3,牢抓選擇題,填空題和第一第二大題,這些好了,80,90是肯定的,上100也有可能,
5,選擇題,填空題的倒數幾題中可能有一道巨難的,放棄吧,不要浪費時間
6,填空題要注意它讓你填的
是什麼,有沒有單位,用什麼格式
7,不要放過後面各大題的第一小問,有時會簡單到無語
8,做多了會發現幾乎所有試卷的模式是一樣的(尤其是證明題
,常出現圖不一樣,證明方法一樣),但在新試卷上看到以前做過題是,不要高興的太早,換了什麼條件也不是不可能,最好再看題目快速的做一遍
9,交卷前一定要檢查名字,考號和答題卡(填錯答案或地方太冤枉了)
數學考試就是時間利用與准確率上的競爭
我是去年的廣東考生,不知你是哪的,但應該有些共通的
希望一點點的個人經驗對你有幫助~
❽ 做數學試卷的技巧
原因一:學生對數學概念理解模糊,缺乏應用意識。
備考期間,很多學生都把精力花在了難題上,而忽略了書本上的基礎題,這是不可取的。對多數孩子而言,打牢基礎是關鍵,應該從課本上找出有價值的題目訓練,切忌題海戰術。
對策:注重概念的發生發展過程,理解概念的本質。如函數、等差數列、等比數列、數學期望等,這幾個字是如何提煉的?它的內涵是什麼?如果對每個數學概念都這樣來學習,就能抓住概念的本質,產生對數學概念很強的理解能力,以後無論是獨立學習新概念,還是讓你定義一個新的數學概念,都會從容自如。
原因二:錯誤理解題意,導致解題錯誤。
對策:審題做到「三心」,解題才能放心。
審題時必須做到「耐心、細心、用心」,這是正確解題的基礎,特別是對文字較長的題目,一定要有耐心,杜絕急躁,眼睛一掃而過,常會造成審題錯誤。
原因三:運算變形能力差,低級錯誤常發生。
對策:端正態度、掌握算理、由慢到快、確保正確。
計算不僅是「算一算」的問題,還有「算理」的掌握,包括數字計算和式子的化簡變形,這種能力是人的基本能力,它貫穿於整個學習的始終。
做題時要抓住幾個要點
要點一:「六先六後」,因人因卷制宜
在通覽全卷,將簡單題順手完成的情況下,情緒趨於穩定,情境趨於單一,大腦趨於亢奮,思維趨於積極,之後便是發揮臨場解題能力的黃金季節了,這時,考生可依自己的解題習慣和基本功,結合整套試題結構,選擇執行「六先六後」的戰術原則。
1.先易後難。
2.先熟後生。
3.先同後異。先做同科同類型的題目,思考比較集中,知識和方法的溝通比較容易,有利於提高單位時間的效益。
4.先小後大。小題一般是信息量少、運算量小,易於把握,不要輕易放過,應爭取在大題之前盡快解決,從而為解決大題贏得時間。
5.先點後面。近年的高考數學解答題多呈現為多問漸難式的「梯度題」,解答時不必一氣審到底,應走一步解決一步,而前面問題的解決又為後面問題准備了思維基礎和解題條件,所以要步步為營,由點到面。
6.先高後低。即在考試的後半段時間,要注重時間效益,如估計兩題都會做,則先做高分題;估計兩題都不易,則先就高分題實施「分段得分」。
❾ 初中數學考試要掌握哪些答題的技巧
數學復習是一個系統的工程,許多同學都在想,如何才能掌握技巧,更好地利用寶貴有限的時間,讓自己能夠取得一個不錯的成績?
今天小編整理了初中各個題型的解題技巧給大家,希望大家能在將來中考獲得好成績。
初中數學解題方法總結
一、選擇題的解法
1、直接法:根據選擇題的題設條件,通過計算、推理或判斷,,最後得到題目的所求。
2、特殊值法:(特殊值淘汰法)有些選擇題所涉及的數學命題與字母的取值范圍有關;
在解這類選擇題時,可以考慮從取值范圍內選取某幾個特殊值,代入原命題進行驗證,然後淘汰錯誤的,保留正確的。
3、淘汰法:把題目所給的四個結論逐一代回原題的題干中進行驗證,把錯誤的淘汰掉,直至找到正確的答案。
4、逐步淘汰法:如果我們在計算或推導的過程中不是一步到位,而是逐步進行,既採用「走一走、瞧一瞧」的策略;
每走一步都與四個結論比較一次,淘汰掉不可能的,這樣也許走不到最後一步,三個錯誤的結論就被全部淘汰掉了。
5、數形結合法:根據數學問題的條件和結論之間的內在聯系,既分析其代數含義,又揭示其幾何意義;
使數量關系和圖形巧妙和諧地結合起來,並充分利用這種結合,尋求解題思路,使問題得到解決。
二、常用的數學思想方法
1、數形結合思想:就是根據數學問題的條件和結論之間的內在聯系,既分析其代數含義,又揭示其幾何意義;
使數量關系和圖形巧妙和諧地結合起來,並充分利用這種結合,尋求解體思路,使問題得到解決。
2、聯系與轉化的思想:事物之間是相互聯系、相互制約的,是可以相互轉化的。數學學科的各部分之間也是相互聯系,可以相互轉化的。
在解題時,如果能恰當處理它們之間的相互轉化,往往可以化難為易,化繁為簡。
如:代換轉化、已知與未知的轉化、特殊與一般的轉化、具體與抽象的轉化、部分與整體的轉化、動與靜的轉化等等。
3、分類討論的思想:在數學中,我們常常需要根據研究對象性質的差異,分各種不同情況予以考查;
這種分類思考的方法,是一種重要的數學思想方法,同時也是一種重要的解題策略。
4、待定系數法:當我們所研究的數學式子具有某種特定形式時,要確定它,只要求出式子中待確定的字母得值就可以了。
為此,把已知條件代入這個待定形式的式子中,往往會得到含待定字母的方程或方程組,然後解這個方程或方程組就使問題得到解決。
5、配方法:就是把一個代數式設法構造成平方式,然後再進行所需要的變化。
配方法是初中代數中重要的變形技巧,配方法在分解因式、解方程、討論二次函數等問題,都有重要的作用。
6、換元法:在解題過程中,把某個或某些字母的式子作為一個整體,用一個新的字母表示,以便進一步解決問題的一種方法。
換元法可以把一個較為復雜的式子化簡,把問題歸結為比原來更為基本的問題,從而達到化繁為簡,化難為易的目的。
7、分析法:在研究或證明一個命題時,又結論向已知條件追溯,既從結論開始,推求它成立的充分條件,這個條件的成立還不顯然;
則再把它當作結論,進一步研究它成立的充分條件,直至達到已知條件為止,從而使命題得到證明。這種思維過程通常稱為「執果尋因」
8、綜合法:在研究或證明命題時,如果推理的方向是從已知條件開始,逐步推導得到結論,這種思維過程通常稱為「由因導果」
9、演繹法:由一般到特殊的推理方法。
10、歸納法:由一般到特殊的推理方法。
11、類比法:眾多客觀事物中,存在著一些相互之間有相似屬性的事物,在兩個或兩類事物之間;
根據它們的某些屬性相同或相似,推出它們在其他屬性方面也可能相同或相似的推理方法。
類比法既可能是特殊到特殊,也可能一般到一般的推理。
三、函數、方程、不等式
常用的數學思想方法:
(1)數形結合的思想方法。
(2)待定系數法。
(3)配方法。
(4)聯系與轉化的思想。
(5)圖像的平移變換。
四、證明角的相等
1、對頂角相等。
2、角(或同角)的補角相等或餘角相等。
3、兩直線平行,同位角相等、內錯角相等。
4、凡直角都相等。
5、角平分線分得的兩個角相等。
6、同一個三角形中,等邊對等角。
7、等腰三角形中,底邊上的高(或中線)平分頂角。
8、平行四邊形的對角相等。
9、菱形的每一條對角線平分一組對角。
10、等腰梯形同一底上的兩個角相等。
11、關系定理:同圓或等圓中,若有兩條弧(或弦、或弦心距)相等,則它們所對的圓心角相等。
12、圓內接四邊形的任何一個外角都等於它的內對角。
13、同弧或等弧所對的圓周角相等。
14、弦切角等於它所夾的弧對的圓周角。
15、同圓或等圓中,如果兩個弦切角所夾的弧相等,那麼這兩個弦切角也相等。
16、全等三角形的對應角相等。
17、相似三角形的對應角相等。
18、利用等量代換。
19、利用代數或三角計算出角的度數相等
20、切線長定理:從圓外一點引圓的兩條切線,它們的切線長相等,並且這一點和圓心的連線平分兩條切線的夾角。
五、證明直線的平行或垂直
1、證明兩條直線平行的主要依據和方法:
(1)定義、在同一平面內不相交的兩條直線平行。
(2)平行定理、兩條直線都和第三條直線平行,這兩條直線也互相平行。
(3)平行線的判定:同位角相等(內錯角或同旁內角),兩直線平行。
(4)平行四邊形的對邊平行。
(5)梯形的兩底平行。
(6)三角形(或梯形)的中位線平行與第三邊(或兩底)
(7)一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,則這條直線平行於三角形的第三邊。
2、證明兩條直線垂直的主要依據和方法:
(1)兩條直線相交所成的四個角中,由一個是直角時,這兩條直線互相垂直。
(2)直角三角形的兩直角邊互相垂直。
(3)三角形的兩個銳角互余,則第三個內角為直角。
(4)三角形一邊的中線等於這邊的一半,則這個三角形為直角三角形。
(5)三角形一邊的平方等於其他兩邊的平方和,則這邊所對的內角為直角。
(6)三角形(或多邊形)一邊上的高垂直於這邊。
(7)等腰三角形的頂角平分線(或底邊上的中線)垂直於底邊。
(8)矩形的兩臨邊互相垂直。
(9)菱形的對角線互相垂直。
(10)平分弦(非直徑)的直徑垂直於這條弦,或平分弦所對的弧的直徑垂直於這條弦。
(11)半圓或直徑所對的圓周角是直角。
(12)圓的切線垂直於過切點的半徑。
(13)相交兩圓的連心線垂直於兩圓的公共弦。