導航:首頁 > 數字科學 > 數學建模的目的是什麼

數學建模的目的是什麼

發布時間:2022-12-26 18:03:08

❶ 數學建模 什麼意思

數學模型就是對實際問題的一種數學表述。
具體一點說:數學模型是關於部分現實世界為某種目的的一個抽象的簡化的數學結構。
更確切地說:數學模型就是對於一個特定的對象為了一個特定目標,根據特有的內在規律,做出一些必要的簡化假設,運用適當的數學工具,得到的一個數學結構。數學結構可以是數學公式,演算法、表格、圖示等。
數學建模就是建立數學模型,建立數學模型的過程就是數學建模的過程(見數學建模過程流程圖)。
數學建模是一種數學的思考方法,是運用數學的語言和方法,通過抽象、簡化建立能近似刻劃並"解決"實際問題的一種強有力的數學手段。

❷ 什麼是數學建模

數學建模
數學建模是利用數學方法解決實際問題的一種實踐。即通過抽象、簡化、假設、引進變數等處理過程後,將實際問題用數學方式表達,建立起數學模型,然後運用先進的數學方法及計算機技術進行求解。

數學建模將各種知識綜合應用於解決實際問題中,是培養和提高學生應用所學知識分析問題、解決問題的能力的必備手段之一。
數學建模是使用數學模型解決實際問題。
數學模型
數學模型是對於現實世界的一個特定對象,一個特定目的,根據特有的內在規律,做出一些必要的假設,運用適當的數學工具,得到一個數學結構。

簡單地說:就是系統的某種特徵的本質的數學表達式(或是用數學術語對部分現實世界的描述),即用數學式子(如函數、圖形、代數方程、微分方程、積分方程、差分方程等)來描述(表述、模擬)所研究的客觀對象或系統在某一方面的存在規律。

❸ 數學建模大賽到底是干什麼的一定要會編程嗎

我曾參加過數學建模競賽。全國大學生數學建模大賽目的是培養大學生能夠在學習知識的同時,學會運用知識解決實際問題,學會將實際問題轉化成數學問題,用數學知識來解決實際問題。並且,培養小組團結合作精神。必須是三人一組,不過最好可以是不同專業的三個人,這樣知識面廣,好解決問題,分工合作。最好會編程,但是不會的話,也可以求助會的人,比如求助你的老師或者會編程的同學。希望我的回答對你有幫助,也希望你能參加,這個大賽很能鍛煉人。

❹ 參加數學建模比賽的意義

參加數學建模比賽的意義

【摘要】本文重點分析了數學建模的特點,探討了計算機應用與數學建模意識的培養之間密不可分的聯絡,闡述了計算機在數學建模競賽中的作用和地位,最後介紹了筆者參加建模競賽與學生參加競賽的經驗與感受。
【關鍵詞】建模意識 計算機應用 數學建模競賽 數學實驗

一、引言

在利用數學方法分析和解決實際問題時,要求從實際錯綜復雜的關系中找出其內在的規律,然後用數學的語言--即數字、公式、圖表、符號等刻畫和描述出來,然後經過數學與計算機的處理--即計算、迭代等得到定量的結果,供人們進行分析、預報、決策和控制,這種把實際問題進行合理的簡化假設歸結為數學問題並求解的過程就是建立數學模型,簡稱建模。而這種成功的方法和技術反映在培養專門人才的大學教學活動中,就是數學建模教學和競賽。數學建模簡而言之就是應用數學模型來解決各種實際問題的過程,也就是通過對實際問題的抽象、簡化、確定變數和引數,並應用某些規律建立變數與引數間的關系的數學問題(或稱一個數學模型),再借用計算機求解該數學問題,並解釋、檢驗、評價所得的解,從而確定能否將其用於解決實際問題的多次迴圈、不斷深化的過程。

二、數學建模的特點

從1985年開始美國都會舉辦一年一度的數學建模競賽(MathematicalContestinModeling,縮寫:MCM),而我國自1992年舉辦首屆全國大學生數學建模競賽以來,它已經成為全國大學生科技競賽的重要專案之一,全國大學生數學建模競賽是面向全國大學生的群眾性科技活動;競賽要求學生(可以是任何專業)以三人為一組參加競賽,可以自由的收集資訊、調查研究,包括使用計算機和任何軟體,甚至上網查詢,但不得與團隊以外的任何人討論,在三天時間內,完成一篇包括模型的假設、建立、求解,計算方法的設計和用計算機對解的實現,以及結果的分析和檢驗,模型的改進等方面的論文。這一活動對於提高大學生素質,促進高校數學與計算機教學改革都起著積極的推動作用。
多年來,一年一度的全國大學生數學建模競賽和國際大學生數學建模競賽,給傳統的高等數學教育改革帶來了新的思路和評價標准,《數學建模》課也從僅僅為參賽隊員培訓,擴充套件為一門比較普及的選修課,同時,《數學試驗》作為一門新的課程也應運而生。數學建模與數學試驗教學的重點是高等與現代數學的深層應用和面向問題的設計,而不是經典理論的深入研討和系統論證。數學建模問題絕大部分來自一些具體的科研課題或實際工程問題,而不同於普通的數學習題或競賽題。數學建模問題的特點是:面向現實生活的應用,有相關的科研背景,綜合性強,涉及面廣,因素關系復雜,缺乏足夠的規范性,難以套用傳統成熟的解決手段,資料量龐大,可採取的演演算法也比較復雜,結果具有一定的彈性空間,需要一定的伴隨條件,許多問題得到的只能是近似解。
另一方面,建模問題不同於理論研究,它重在對實際問題的處理,而不是深層次純粹數學理論或者世界難題。所以,求解建模問題大都藉助各種輔助工具或手段,尤其是計算機軟體的應用,大大地提高了解題效率和質量。總之,《數學建模》是一門技術應用的課程,而不是基礎教育課程,它強調的是如何更好更快地解決問題,如何充分利用各種科技手段作為技術支援,因而計算機的應用已經成為其不可或缺的一項基本組成。與此相關的計算機技術主要有兩部分:一是如何將實際問題或模型轉化或表述為可用計算機軟體或程式設計實現的演演算法;二是採用哪些應用軟體或程式設計技術可以解決這些問題。顯然,後者是前者的基礎,確定了工具方案,才有相應的解決方案。
由於數學建模的以上特點,決定了數學建模與計算機具有密切相關的聯絡,計算機在數學建模思想意識培養中發揮了重要的作用,主要是提供了有力工具和技術支援,它是更好更快進行建模的基礎。計算機水平的高低可以說決定一個團隊整體的建模水平。

三、數學建模與計算機的關系

計算機的產生正是數學建模的產物,20紀40年代,美國為了研究彈道導彈飛行軌跡的問題,迫切需要一種計算工具來代替人工計算,計算機在這樣的背景下應運而生。計算機的產生與發展又極大地推動了數學建模活動,計算機高速的運算能力,非常適合數學建模過程中的數值計算;它的大容量貯存能力以及網路通訊功能,使得數學建模過程中資料存貯、檢索變得方便有效;它的多媒體化,使得數學建模中一些問題能在計算機上進行更為逼真的模擬實驗;它的智慧化,能隨時提醒、幫助我們進行數學模型求解。此外,如Mathlab、Maple、SAS、SPSS等一批優秀數學軟體的出現更使數學建模如虎添翼。再者,數學建模與生活實際密切相關,所採集到的資料量多,而且比較復雜,比如DVD線上租賃,長江水質的評價和預測,銀行貸款和分期付款等,往往計算量大,需要藉助於計算機才能快捷、簡便地完成。數學建模競賽與以往所說的那種數學競賽(純數學競賽)不同,它要用到計算機,甚至離不開計算機,但卻又不是純粹的計算機競賽,它涉及到物理、化學、生物、醫學、電子、農業、軍事、管理等各學科、各領域,但又不受任何一個具體的學科、領域的限制。數學建模過程需要經過模型假設、模型建立、模型求解、模型分析與檢驗、模型應用等幾個步驟,在這些步驟中都伴隨著計算機的使用。例如,模型求解時,需要上機計算、編制軟體、繪制圖形等,數學建模競賽中印表機隨時可能使用,同時,數學建模的學習對計算機能力的培養也起著極大推動作用,如報考計算機方向的研究生時,對數學的要求非常高;在進行電腦科學的研究時,也要求有極強的數學功底才能寫出具有相當深度的論文,電腦科學的發展也是建立在數學基礎之上的,許多為計算機的發展做出傑出貢獻的科學家都出身於數學專業,顯而易見,比賽中的一個重要環節是使用計算機來解決問題,這對使用計算機的能力的提高是很明顯的。
數學建模的目的是構建數學建模意識,培養學生創造性思維能力,在諸多的思維活動中,創新思維是最高層次的思維活動,是開拓性、創造性人才所必須具備的能力,培養創造性思維能力,主要應培養學生靈活運用基本理論解決實際問題的能力,在數學教學中培養學生的建模意識實質上是培養、發展學生的創造性思維能力,因為建模活動本身就是一項創造性的思維活動,它既具有一定的理論性,又具有較強的實踐性,還要求思維的深刻性和靈活性,而且在建模活動過程中,能培養學生獨立、自覺地運用所給問題的條件,尋求解決問題的最佳方法和途徑,可以培養學生的想像能力、直覺思維、猜測、轉換、構造等能力,而這些數學能力正是創造性思維所具有的最基本的特徵,在培養創新思維過程中要求必須具有一定的計算機基礎,只有具有一定的計算機知識才能更好的處理資料,發現事物之間的內在的聯絡,才能更好的進行知識的轉換,才能更好的構造出最優的模型。總之,具有必備的計算機知識是培養建模意識的關鍵,是培養數模創新能力的前提。計算機也為數學建模競賽活動提供了有力的工具。

四、計算機在數學建模中的運用

計算機的運用,不僅方便我們上網查詢建模問題所涉及的知識,相關的文獻資料,而且方便我們處理資料,進行模型求解,模型檢驗。
建模相關計算機軟體是我們在建立模型,處理模型必需掌握的軟體,他們各有自己的特點,使用他們時要注意區分他們的優缺點,選擇更合適的軟體來處理問題,常用軟體包含一下幾種型別:

1、通用數學軟體。主要包括有Matlab、Mathematica、Maple和Mathcad等,在能力和用法上,都比較相近,主要用於繪制已知函式的圖形和進行計算,支援完全的符號運算、精確計算和任意精度的近似計算。它們都能對數學中的微積分、解析幾何、線性代數、微分方程、計算方法、概率統計等諸多領域的常見問題進行求解,但也有各自特點:例如Mathematica的符號計算能力較為強大,而Matlab在數值計算、矩陣計算和圖形繪制方面更有優勢,因此可以結合起來使用。
2、Lingo/Lindo 計算最優化問題的專用數學軟體。Lindo用於求解線性規劃和二次規劃,Lingo除了具有Lindo的全部功能外,還可以用於求解非線性規劃,也可以用於一些線性和非線性方程組的求解以及代數方程求根等,二者都可以求解整數規劃。。
3、統計分析軟體,SPSS名為社會學統計軟體包,主要功能有:基本統計分析、定義表、比較平均數;一般線性模式;相關分析;回歸分析、邏輯線性分析、聚類和判別分析、因子分析、非引數檢驗、時間序列、比例、多元反應等。SAS提供許多資料庫查詢統計功能,在概率和統計的經典處理計算方面提供了豐富的函式支援。是統計專業軟體。
4、高階程式語言種類較多,如C、C++、C#、Basic、Delphi和Java等。
5、繪圖軟體。將一些圖表加入附件可以為文章增色。數學軟體只能繪制已知函式的圖形,若是要繪制一個大致的圖形,就必須使用繪圖軟體。可以使用幾何畫板、Photoshop、Flash等。因此,數學建模競賽今後的趨勢是,要求學生對各方面的知識都有所了解,對學生的計算機知識要求也更高,近年來的數學建模競賽幾乎所有的競賽題目都涉及大量的計算或邏輯運算,因此不掌握計算機和相關數學軟體的使用是難以取得好成績的;又由於競賽題目來自不同的領域,事先又不了解,而利用Inter可以迅速查到相關資料,這也有助於在競賽中取得好成績,由此可見,計算機和數學建模之間具有密不可分的聯絡,兩者的有機結合,有效的提高了高校學生靈活運用理論知識的能力、知識的遷移能力、實際應用能力以及分析問題和解決問題。

五、結束語

筆者上大學期間參加了兩次數模競賽,近幾年也參加了學院的數學建模競賽輔導,能夠深刻從中體會到其中的酸甜,也領悟到數學建模競賽的精髓;它不僅有利於學生更好的掌握知識、運用知識,也有利於高校的科研和教學,使學生和教師能在平時的學習、工作中自動形成勤於思考的好習慣,數學建模競賽與學生畢業以後工作時的條件非常相近,是對學生業務、能力和素質的全面培養,特別是開放性思維和創新意識,這項活動的開展有利於學生的全面素質的培養,既豐富、活躍了廣大學生的課外生活,也為優秀學員脫穎而出創造了條件。不少參賽培訓的同學有共同的體會,一次參賽終身受益。數學建模是通向未來的成功之路,不管名次如何,每個參賽者都是成功者。總之,利用計算機技術來開展數學建模,必將有利於數學模型的建立、求解、演算和表達,為探索者創造出理想的背景,同時也使我們的計算機用得越來越好、越來越活,數學建模中計算機的應用,使數學建模的進步如虎添翼;計算機中數學建模方法的使用,使得計算機的發展日益迅速,計算機技術與數學建模的結合,必將推動兩者的快速發展。

參加數學建模大賽的意義何在

❺ 數學建模的意義

從以下幾個方面說一下:
1.數學建模提高了自己對數學的興趣。
2.數學建模提高了自己的獨立思考的能力。
3.數學建模鍛煉了我們團隊合作的能力。
4.數學建模使我們對論文的格式有了一個了解。
5.數學建模豐富了我們的業餘生活。
6.數學建模能使我們找到志同道合的朋友。
數學建模是我們對計算機的知識也有了一定的加深。
可以從上面的幾個方面總結一下參加數學建模的意義,希望能對你有所幫助。

❻ 數學建模是什麼啊

在我的理解:

數學建模就是指對於一個現實對象,為了一個特定目的,根據其內在規律,作出必要的簡化假設,運用適當的數學工具,得到的一個數學結構。他的意義在於利用數學方法解決實際問題。

如果想要學好數學建模必須學習:高數,線性代數,C語言,還涉及到模糊數學(部分),同時在建模過程中學會MATLAB和lingo等軟體的使用。能夠培養一個人的開發能力和自主學習能力,還是很有用處的。

拓展知識:新手入門書

  1. 數學模型(姜啟源、謝金星) 很適合新手,在內容編排上也是國產風格,按模型知識點分類,一塊一塊講,面面俱到。

  2. 數學建模方法與分析.(紐西蘭)Mark.M.Meerschaert 它是典型的外國教材風格,從一個模型例子開始,娓娓道來,跟你講述數學建模的方方面面,其中反復強調的一個數學建模五步法,後來細細體會起來的確很有道理,看完大部分這本書的內容,就可以體會並應用這個方法了。

❼ 數學建模的目的和方法

目的:數學模型(Mathematical Model)是一種模擬,是用數學符號、數學式子、程序、圖形等對實際課題本質屬性的抽象而又簡潔的刻劃,它或能解釋某些客觀現象,或能預測未來的發展規律,或能為控制某一現象的發展提供某種意義下的最優策略或較好策略.數學模型一般並非現實問題的直接翻版,它的建立常常既需要人們對現實問題深入細微的觀察和分析,又需要人們靈活巧妙地利用各種數學知識.這種應用知識從實際課題中抽象、提煉出數學模型的過程就稱為數學建模(Mathematical Modeling)
方法:模型准備
了解問題的實際背景,明確其實際意義,掌握對象的各種信息.以數學思想來包容問題的精髓,數學思路貫穿問題的全過程,進而用數學語言來描述問題.要求符合數學理論,符合數學習慣,清晰准確.
模型假設
根據實際對象的特徵和建模的目的,對問題進行必要的簡化,並用精確的語言提出一些恰當的假設.
模型建立
在假設的基礎上,利用適當的數學工具來刻劃各變數常量之間的數學關系,建立相應的數學結構(盡量用簡單的數學工具).
利用獲取的數據資料,對模型的所有參數做出計算(或近似計算).
模型分析
對所得的結果進行數學上的分析.
模型檢驗
將模型分析結果與實際情形進行比較,以此來驗證模型的准確性、合理性和適用性.如果模型與實際較吻合,則要對計算結果給出其實際含義,並進行解釋.如果模型與實際吻合較差,則應該修改假設,再次重復建模過程.
模型應用
應用方式因問題的性質和建模的目的而異.

❽ 數學建模是關於什麼的,具體做些什麼大神們幫幫忙

數學建模就是用數學語言描述實際現象的過程。這里的實際現象既包涵具體的自然現象比如自由落體現象,也包涵抽象的現象比如顧客對某種商品所取的價值傾向。這里的描述不但包括外在形態,內在機制的描述,也包括預測,試驗和解釋實際現象等內容。 我們也可以這樣直觀地理解這個概念:數學建模是一個讓純粹數學家(指只懂數學不懂數學在實際中的應用的數學家)變成物理學家,生物學家,經濟學家甚至心理學家等等的過程。 數學模型一般是實際事物的一種數學簡化。它常常是以某種意義上接近實際事物的抽象形式存在的,但它和真實的事物有著本質的區別。要描述一個實際現象可以有很多種方式,比如錄音,錄像,比喻,傳言等等。為了使描述更具科學性,邏輯性,客觀性和可重復性,人們採用一種普遍認為比較嚴格的語言來描述各種現象,這種語言就是數學。使用數學語言描述的事物就稱為數學模型。有時候我們需要做一些實驗,但這些實驗往往用抽象出來了的數學模型作為實際物體的代替而進行相應的實驗,實驗本身也是實際操作的一種理論替代。 數學是研究現實世界數量關系和空間形式的科學,在它產生和發展的歷史長河中,一直是和各種各樣的應用問題緊密相關的。數學的特點不僅在於概念的抽象性、邏輯的嚴密性,結論的明確性和體系的完整性,而且在於它應用的廣泛性,進入20世紀以來,隨著科學技術的迅速發展和計算機的日益普及,人們對各種問題的要求越來越精確,使得數學的應用越來越廣泛和深入,特別是在即將進入21世紀的知識經濟時代,數學科學的地位會發生巨大的變化,它正在從國或經濟和科技的後備走到了前沿。經濟發展的全球化、計算機的迅猛發展,數學理倫與方法的不斷擴充使得數學已經成為當代高科技的一個重要組成部分和思想庫,數學已經成為一種能夠普遍實施的技術。培養學生應用數學的意識和能力已經成為數學教學的一個重要方面。 應用數學去解決各類實際問題時,建立數學模型是十分關鍵的一步,同時也是十分困難的一步。建立教學模型的過程,是把錯綜復雜的實際問題簡化、抽象為合理的數學結構的過程。要通過調查、收集數據資料,觀察和研究實際對象的固有特徵和內在規律,抓住問題的主要矛盾,建立起反映實際問題的數量關系,然後利用數學的理論和方法去分析和解決問題。這就需要深厚扎實的數學基礎,敏銳的洞察力和想像力,對實際問題的濃厚興趣和廣博的知識面。數學建模是聯系數學與實際問題的橋梁,是數學在各個領械廣泛應用的媒介,是數學科學技術轉化的主要途徑,數學建模在科學技術發展中的重要作用越來越受到數學界和工程界的普遍重視,它已成為現代科技工作者必備的重要能力之。為了適應科學技術發展的需要和培養高質量、高層次科技人才,數學建模已經在大學教育中逐步開展,國內外越來越多的大學正在進行數學建模課程的教學和參加開放性的數學建模競賽,將數學建模教學和競賽作為高等院校的教學改革和培養高層次的科技人才的個重要方面,現在許多院校正在將數學建模與教學改革相結合,努力探索更有效的數學建模教學法和培養面向21世紀的人才的新思路,與我國高校的其它數學類課程相比,數學建模具有難度大、涉及面廣、形式靈活,對教師和學生要求高等特點,數學建模的教學本身是一個不斷探索、不斷創新、不斷完善和提高的過程。為了改變過去以教師為中心、以課堂講授為主、以知識傳授為主的傳統教學模式,數學建模課程指導思想是:以實驗室為基礎、以學生為中心、以問題為主線、以培養能力為目標來組織教學工作。通過教學使學生了解利用數學理論和方法去分析和解決問題的全過程,提高他們分析問題和解決問題的能力;提高他們學習數學的興趣和應用數學的意識與能力,使他們在以後的工作中能經常性地想到用數學去解決問題,提高他們盡量利用計算機軟體及當代高新科技成果的意識,能將數學、計算機有機地結合起來去解決實際問題。數學建模以學生為主,教師利用一些事先設計好問題啟發,引導學生主動查閱文獻資料和學習新知識,鼓勵學生 積極開展討論和辯論,培養學生主動探索,努力進取的學風,培養學生從事科研工作的初步能力,培養學生團結協作的精神、形成一個生動活潑的環境和氣氛,教學過程的重點是創造一個環境去誘導學生的學習慾望、培養他們的自學能力,增強他們的數學素質和創新能力,提高他們的數舉素質,強調的是獲取新知識的能力,是解決問題的過程,而不是知識與結果。接受參加數學建模競賽賽前培訓的同學大都需要學習諸如數理統計、最優化、圖論、微分方程、計算方法、神經網路、層次分析法、模糊數學,數學軟體包的使用等等「短課程」(或講座),用的學時不多,多數是啟發性的講一些基本的概念和方法,主要是靠同學們自己去學,充分調動同學們的積極性,充分發揮同學們的潛能。培訓中廣泛地採用的討論班方式,同學自己報告、討論、辯論,教師主要起質疑、答疑、輔導的作用,競賽中一定要使用計算機及相應的軟體,如Mathemathmatica,Matlab,Mapple,甚至排版軟體等。 數學建模的幾個過程: 模型准備:了解問題的實際背景,明確其實際意義,掌握對象的各種信息。用數學語言來描述問題。 模型假設:根據實際對象的特徵和建模的目的,對問題進行必要的簡化,並用精確的語言提出一些恰當的假設。 模型建立:在假設的基礎上,利用適當的數學工具來刻劃各變數之間的數學關系,建立相應的數學結構。(盡量用簡單的數學工具) 模型求解:利用獲取的數據資料,對模型的所有參數做出計算(估計)。 模型分析:對所得的結果進行數學上的分析。 模型檢驗:將模型分析結果與實際情形進行比較,以此來驗證模型的准確性、合理性和適用性。如果模型與實際較吻合,則要對計算結果給出其實際含義,並進行解釋。如果模型與實際吻合較差,則應該修改假設,再次重復建模過程。 模型應用:應用方式因問題的性質和建模的目的而異。

閱讀全文

與數學建模的目的是什麼相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:739
乙酸乙酯化學式怎麼算 瀏覽:1404
沈陽初中的數學是什麼版本的 瀏覽:1350
華為手機家人共享如何查看地理位置 瀏覽:1042
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:884
數學c什麼意思是什麼意思是什麼 瀏覽:1408
中考初中地理如何補 瀏覽:1299
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:701
數學奧數卡怎麼辦 瀏覽:1387
如何回答地理是什麼 瀏覽:1023
win7如何刪除電腦文件瀏覽歷史 瀏覽:1055
大學物理實驗干什麼用的到 瀏覽:1484
二年級上冊數學框框怎麼填 瀏覽:1699
西安瑞禧生物科技有限公司怎麼樣 瀏覽:969
武大的分析化學怎麼樣 瀏覽:1247
ige電化學發光偏高怎麼辦 瀏覽:1337
學而思初中英語和語文怎麼樣 瀏覽:1650
下列哪個水飛薊素化學結構 瀏覽:1423
化學理學哪些專業好 瀏覽:1486
數學中的棱的意思是什麼 瀏覽:1057