導航:首頁 > 數字科學 > 高中數學基礎概念有多少

高中數學基礎概念有多少

發布時間:2022-12-27 17:13:57

㈠ 高中數學包括哪些內容

《高中數學》是由人民教育出版社出版的圖書,該書由人民教育出版社、課程教材研究所、數學課程教材研究開發中心共同編制,內容包括《集合與函數》《三角函數》《不等式》《數列》《復數》《排列、組合、二項式定理》《立體幾何》《平面解析幾何》等部分。

公式口訣:

《集合與函數》

內容子交並補集,還有冪指對函數。性質奇偶與增減,觀察圖象最明顯。

復合函數式出現,性質乘法法則辨,若要詳細證明它,還須將那定義抓。

指數與對數函數,兩者互為反函數。底數非1的正數,1兩邊增減變故。

函數定義域好求。分母不能等於0,偶次方根須非負,零和負數無對數

正切函數角不直,餘切函數角不平;其餘函數實數集,多種情況求交集。

兩個互為反函數,單調性質都相同;圖象互為軸對稱,Y=X是對稱軸。

求解非常有規律,反解換元定義域;反函數的定義域,原來函數的值域。

冪函數性質易記,指數化既約分數;函數性質看指數,奇母奇子奇函數,

奇母偶子偶函數,偶母非奇偶函數;圖象第一象限內,函數增減看正負。

《三角函數》

三角函數是函數,象限符號坐標注。函數圖象單位圓,周期奇偶增減現。

同角關系很重要,化簡證明都需要。正六邊形頂點處,從上到下弦切割

中心記上數字1,連結頂點三角形;向下三角平方和,倒數關系是對角,

頂點任意一函數,等於後面兩根除。誘導公式就是好,負化正後大化小,

變成稅角好查表,化簡證明少不了。二的一半整數倍,奇數化余偶不變,

將其後者視銳角,符號原來函數判。兩角和的餘弦值,化為單角好求值,

餘弦積減正弦積,換角變形眾公式。和差化積須同名,互餘角度變名稱。

計算證明角先行,注意結構函數名,保持基本量不變,繁難向著簡易變。

逆反原則作指導,升冪降次和差積。條件等式的證明,方程思想指路明。

萬能公式不一般,化為有理式居先。公式順用和逆用,變形運用加巧用

1加餘弦想餘弦,1減餘弦想正弦,冪升一次角減半,升冪降次它為范

三角函數反函數,實質就是求角度,先求三角函數值,再判角取值范圍

利用直角三角形,形象直觀好換名,簡單三角的方程,化為最簡求解集

《不等式》

解不等式的途徑,利用函數的性質。對指無理不等式,化為有理不等式。

高次向著低次代,步步轉化要等價。數形之間互轉化,幫助解答作用大。

證不等式的方法,實數性質威力大。求差與0比大小,作商和1爭高下。

直接困難分析好,思路清晰綜合法。非負常用基本式,正面難則反證法。

還有重要不等式,以及數學歸納法。圖形函數來幫助,畫圖建模構造法。

《數列》

等差等比兩數列,通項公式N項和。兩個有限求極限,四則運算順序換。

數列問題多變幻,方程化歸整體算。數列求和比較難,錯位相消巧轉換,

取長補短高斯法,裂項求和公式算。歸納思想非常好,編個程序好思考:

一算二看三聯想,猜測證明不可少。還有數學歸納法,證明步驟程序化:

首先驗證再假定,從K向著K加1,推論過程須詳盡,歸納原理來肯定。

《復數》

虛數單位i一出,數集擴大到復數。一個復數一對數,橫縱坐標實虛部。

對應復平面上點,原點與它連成箭。箭桿與X軸正向,所成便是輻角度。

箭桿的長即是模,常將數形來結合。代數幾何三角式,相互轉化試一試。

代數運算的實質,有i多項式運算。i的正整數次慕,四個數值周期現。

一些重要的結論,熟記巧用得結果。虛實互化本領大,復數相等來轉化。

利用方程思想解,注意整體代換術。幾何運算圖上看,加法平行四邊形,

減法三角法則判;乘法除法的運算,逆向順向做旋轉,伸縮全年模長短。

三角形式的運算,須將輻角和模辨。利用棣莫弗公式,乘方開方極方便。

輻角運算很奇特,和差是由積商得。四條性質離不得,相等和模與共軛,

兩個不會為實數,比較大小要不得。復數實數很密切,須注意本質區別。

《排列、組合、二項式定理》

加法乘法兩原理,貫穿始終的法則。與序無關是組合,要求有序是排列。

兩個公式兩性質,兩種思想和方法。歸納出排列組合,應用問題須轉化。

排列組合在一起,先選後排是常理。特殊元素和位置,首先注意多考慮。

不重不漏多思考,捆綁插空是技巧。排列組合恆等式,定義證明建模試。

關於二項式定理,中國楊輝三角形。兩條性質兩公式,函數賦值變換式。

《立體幾何》

點線面三位一體,柱錐檯球為代表。距離都從點出發,角度皆為線線成。

垂直平行是重點,證明須弄清概念。線線線面和面面、三對之間循環現。

方程思想整體求,化歸意識動割補。計算之前須證明,畫好移出的圖形。

立體幾何輔助線,常用垂線和平面。射影概念很重要,對於解題最關鍵。

異面直線二面角,體積射影公式活。公理性質三垂線,解決問題一大片。

《平面解析幾何》

有向線段直線圓,橢圓雙曲拋物線,參數方程極坐標,數形結合稱典範。

笛卡爾的觀點對,點和有序實數對,兩者—一來對應,開創幾何新途徑。

兩種思想相輝映,化歸思想打前陣;都說待定系數法,實為方程組思想。

三種類型集大成,畫出曲線求方程,給了方程作曲線,曲線位置關系判。

四件工具是法寶,坐標思想參數好;平面幾何不能丟,旋轉變換復數求。

解析幾何是幾何,得意忘形學不活。圖形直觀數入微,數學本是數形學。

(1)高中數學基礎概念有多少擴展閱讀:

意義:

一、正確地理解概念

我國從20世紀50年代以來,中學數學教學大綱雖經歷多次修訂,但都有一個共同的指導思想,這就是搞好三基。並強調指出,正確理解數學概念是掌握數學基礎知識的前提。而當前我國數學教學中的突出問題,恰好是把掌握數學基礎,即數學概念的正確理解,給忽視了。

一方面是教材低估了學生的理解能力,為了「減負」,淡化甚至迴避一些較難理解的基本概念;

另一方面,「題海戰術」式的應試策略,使教師沒有充分的時間和精力去鑽研如何使學生深入理解基本的數學概念。說是為了減負,其實南轅北轍,老師、學生的壓力都增加了。

沒有「過程」的教學,因為缺乏數學思想方法為紐帶,概念間的關系無法認識,概念間的聯系難以建立,導致學生的數學認知結構缺乏整體性。

二、對不同的概念,要採取不同的方法

有的只需在例題教學中實施概念教學。比如:相關關系的概念是描述性的,不必追求形式化上的嚴格。建議採用案例教學法。對比函數關系,重點突出相關關系的兩個本質特徵在:關聯性和不確定性。

有的先介紹概念產生的背景,然後通過與概念有明顯聯系、直觀性強的例子,使學生在對具體問題的體驗中感知概念,提煉出本質屬性。

有的要聯系其它概念,藉助多媒體等一些輔助設施進行直觀教學。

三、在新舊概念之間掌握概念

數學中有許多概念都有著密切的聯系,如平行線段與平行向量、平面角與空間角、方程與不等式、映射與函數、對立事件與互斥事件等等,在教學中應善於尋找、分析其聯系與區別,有利於學生掌握概念的本質。

再如,函數概念有兩種定義,一種是初中給出的定義,是從運動變化的觀點出發,其中的對應關系是將自變數的每一個取值,與唯一確定的函數值對應起來:另一種是高中給出的定義,是從集合、對應的觀點出發,其中的對應關系是將原象集合中的每一個元素與象集合中唯一確定的元素對應起來。

㈡ 高中數學有哪些知識

必修1:集合、函數概念與基本初等函數(指、對、冪函數)
必修2:立體幾何初步、平面解析幾何初步。
必修3:演算法初步、統計、概率。
必修4:基本初等函數(三角函數)、平面向量、三角恆等變換。
必修5:解三角形、數列、不等式。
以上是每一個高中學生所必須學習的。
上述內容覆蓋了高中階段傳統的數學基礎知識和基本技能的主要部分,其中包括集合、函數、數列、不等式、解三角形、立體幾何初步、平面解析幾何初步等。不同的是在保證打好基礎的同時,進一步強調了這些知識的發生、發展過程和實際應用,而不在技巧與難度上做過高的要求。
此外,基礎內容還增加了向量、演算法、概率、統計等內容。

系列1:由2個模塊組成。
選修1—1:常用邏輯用語、圓錐曲線與方程、導數及其應用。
選修1—2:統計案例、推理與證明、數系的擴充與復數、框圖
系列2:由3個模塊組成。
選修2—1:常用邏輯用語、圓錐曲線與方程、
空間向量與立體幾何。
選修2—2:導數及其應用,推理與證明、數系的擴充與復數
選修2—3:計數原理、隨機變數及其分布列,統計案例。
選修3—1:數學史選講。
選修3—2:信息安全與密碼。
選修3—3:球面上的幾何。
選修3—4:對稱與群。
選修3—5:歐拉公式與閉曲面分類。
選修3—6:三等分角與數域擴充。
選修4—1:幾何證明選講。
選修4—2:矩陣與變換。
選修4—3:數列與差分。
選修4—4:坐標系與參數方程。
選修4—5:不等式選講。
選修4—6:初等數論初步。
選修4—7:優選法與試驗設計初步。
選修4—8:統籌法與圖論初步。
選修4—9:風險與決策。
選修4—10:開關電路與布爾代數。

㈢ 高中數學知識有哪些簡單概括

函數:映射及他的3個特徵,一一映射,函數的定義,及3要數,2個函數相等的條件,函數的表示方法。函數的單調性,奇偶性,周期性。指數函數的性質,對數函數的性質及圖像,互為反函數的性質和求解步驟,二次函數,零點問題,導數及其應用(求單調性,極值的判定,運演算法則)。(微積分,定積分。這個不是很重要的)
三角函數:任意角及弧度制,扇形的弧長及面積公式,三角函數的定義,及基本關系和誘導公式,三角函數的圖像及性質,恆等變換(兩角和與差的三角函數公式,二倍角公式,半形公式,輔助角公式),解三角形,三角形面積公式。
平面向量(概念及線性運算)平面向量的基本定理及共線向量定律,數量積及有關結論。
立體幾何其實沒有什麼需要記的知識,全靠個人的空間想像力,我是沒有記過什麼,就是求解表面積,體積什麼的,三視圖,點線面之間的關系,別忘了空間向量也可以求解。
解析幾何:就是求直線,曲線,圓,橢圓,拋物線啦,要靈活的運用三角形知識什麼的,你做題多了這個就會的,我這樣寫不是很全面,但是是大概的方向了,希望能幫到你,數學考的好一點

㈣ 高中三年數學有多少個知識點

與高一高二不同之處在於,此時復習力學部分知識是為了更好的與高考考綱相結合,尤其水平中等或中等偏下的學生,此時需要進行查漏補缺,但也需要同時提升能力,填補知識、技能的空白。接下來是小編為大家整理的高三數學知識點梳理,希望大家喜歡!

高三數學知識點梳理一

數列是高中數學的重要內容,又是學習高等數學的基礎。高考對本章的考查比較全面,等差數列,等比數列的考查每年都不會遺漏。有關數列的試題經常是綜合題,經常把數列知識和指數函數、對數函數和不等式的知識綜合起來,試題也常把等差數列、等比數列,求極限和數學歸納法綜合在一起。

探索性問題是高考的熱點,常在數列解答題中出現。本章中還蘊含著豐富的數學思想,在主觀題中著重考查函數與方程、轉化與化歸、分類討論等重要思想,以及配方法、換元法、待定系數法等基本數學方法。

近幾年來,高考關於數列方面的命題主要有以下三個方面;

(1)數列本身的有關知識,其中有等差數列與等比數列的概念、性質、通項公式及求和公式。

(2)數列與其它知識的結合,其中有數列與函數、方程、不等式、三角、幾何的結合。

(3)數列的應用問題,其中主要是以增長率問題為主。試題的難度有三個層次,小題大都以基礎題為主,解答題大都以基礎題和中檔題為主,只有個別地方用數列與幾何的綜合與函數、不等式的綜合作為最後一題難度較大。

1.在掌握等差數列、等比數列的定義、性質、通項公式、前n項和公式的基礎上,系統掌握解等差數列與等比數列綜合題的規律,深化數學思想方法在解題實踐中的指導作用,靈活地運用數列知識和方法解決數學和實際生活中的有關問題;
2.在解決綜合題和探索性問題實踐中加深對基礎知識、基本技能和基本數學思想方法的認識,溝通各類知識的聯系,形成更完整的知識網路,提高分析問題和解決問題的能力,

進一步培養學生閱讀理解和創新能力,綜合運用數學思想方法分析問題與解決問題的能力

高三數學知識點梳理二

隨機抽樣

簡介

(抽簽法、隨機樣數表法)常常用於總體個數較少時,它的主要特徵是從總體中逐個抽取;

優點:操作簡便易行

缺點:總體過大不易實行

方法

(1)抽簽法

一般地,抽簽法就是把總體中的N個個體編號,把號碼寫在號簽上,將號簽放在一個容器中,攪拌均勻後,每次從中抽取一個號簽,連續抽取n次,就得到一個容量為n的樣本。

(抽簽法簡單易行,適用於總體中的個數不多時。當總體中的個體數較多時,將總體「攪拌均勻」就比較困難,用抽簽法產生的樣本代表性差的可能性很大)

(2)隨機數法

隨機抽樣中,另一個經常被採用的方法是隨機數法,即利用隨機數表、隨機數骰子或計算機產生的隨機數進行抽樣。

分層抽樣

簡介

分層抽樣主要特徵分層按比例抽樣,主要使用於總體中的個體有明顯差異。共同點:每個個體被抽到的概率都相等N/M。

定義

一般地,在抽樣時,將總體分成互不交叉的層,然後按照一定的比例,從各層獨立地抽取一定數量的個體,將各層取出的個體合在一起作為樣本,這種抽樣方法是一種分層抽樣。

整群抽樣

定義

什麼是整群抽樣

整群抽樣又稱聚類抽樣。是將總體中各單位歸並成若干個互不交叉、互不重復的集合,稱之為群;然後以群為抽樣單位抽取樣本的一種抽樣方式。

應用整群抽樣時,要求各群有較好的代表性,即群內各單位的差異要大,群間差異要小。

優缺點

整群抽樣的優點是實施方便、節省經費;

整群抽樣的缺點是往往由於不同群之間的差異較大,由此而引起的抽樣誤差往往大於簡單隨機抽樣。

實施步驟

先將總體分為i個群,然後從i個群鍾隨即抽取若干個群,對這些群內所有個體或單元均進行調查。抽樣過程可分為以下幾個步驟:

一、確定分群的標注

二、總體(N)分成若干個互不重疊的部分,每個部分為一群。

三、據各樣本量,確定應該抽取的群數。

四、採用簡單隨機抽樣或系統抽樣方法,從i群中抽取確定的群數。

例如,調查中學生患近視眼的情況,抽某一個班做統計;進行產品檢驗;每隔8h抽1h生產的全部產品進行檢驗等。

與分層抽樣的區別

整群抽樣與分層抽樣在形式上有相似之處,但實際上差別很大。

分層抽樣要求各層之間的差異很大,層內個體或單元差異小,而整群抽樣要求群與群之間的差異比較小,群內個體或單元差異大;

分層抽樣的樣本是從每個層內抽取若干單元或個體構成,而整群抽樣則是要麼整群抽取,要麼整群不被抽取。

系統抽樣

定義

當總體中的個體數較多時,採用簡單隨機抽樣顯得較為費事。這時,可將總體分成均衡的幾個部分,然後按照預先定出的規則,從每一部分抽取一個個體,得到所需要的樣本,這種抽樣叫做系統抽樣。

步驟

一般地,假設要從容量為N的總體中抽取容量為n的樣本,我們可以按下列步驟進行系統抽樣:

(1)先將總體的N個個體編號。有時可直接利用個體自身所帶的號碼,如學號、准考證號、門牌號等;

(2)確定分段間隔k,對編號進行分段。當N/n(n是樣本容量)是整數時,取k=N/n;

(3)在第一段用簡單隨機抽樣確定第一個個體編號l(l≤k);

(4)按照一定的規則抽取樣本。通常是將l加上間隔k得到第2個個體編號(l+k),再加k得到第3個個體編號(l+2k),依次進行下去,直到獲取整個樣本。

高三數學知識點梳理三

(一)導數第一定義

設函數y=f(x)在點x0的某個領域內有定義,當自變數x在x0處有增量△x(x0+△x也在該鄰域內)時,相應地函數取得增量△y=f(x0+△x)-f(x0);如果△y與△x之比當△x→0時極限存在,則稱函數y=f(x)在點x0處可導,並稱這個極限值為函數y=f(x)在點x0處的導數記為f'(x0),即導數第一定義

(二)導數第二定義

設函數y=f(x)在點x0的某個領域內有定義,當自變數x在x0處有變化△x(x-x0也在該鄰域內)時,相應地函數變化△y=f(x)-f(x0);如果△y與△x之比當△x→0時極限存在,則稱函數y=f(x)在點x0處可導,並稱這個極限值為函數y=f(x)在點x0處的導數記為f'(x0),即導數第二定義

(三)導函數與導數

如果函數y=f(x)在開區間I內每一點都可導,就稱函數f(x)在區間I內可導。這時函數y=f(x)對於區間I內的每一個確定的x值,都對應著一個確定的導數,這就構成一個新的函數,稱這個函數為原來函數y=f(x)的導函數,記作y',f'(x),dy/dx,df(x)/dx。導函數簡稱導數。

(四)單調性及其應用

1.利用導數研究多項式函數單調性的一般步驟

(1)求f¢(x)

(2)確定f¢(x)在(a,b)內符號(3)若f¢(x)>0在(a,b)上恆成立,則f(x)在(a,b)上是增函數;若f¢(x)<0在(a,b)上恆成立,則f(x)在(a,b)上是減函數

2.用導數求多項式函數單調區間的一般步驟

(1)求f¢(x)

(2)f¢(x)>0的解集與定義域的交集的對應區間為增區間;f¢(x)<0的解集與定義域的交集的對應區間為減區間

高三數學知識點梳理四

1.數列的定義

按一定次序排列的一列數叫做數列,數列中的每一個數都叫做數列的項.

(1)從數列定義可以看出,數列的數是按一定次序排列的,如果組成數列的數相同而排列次序不同,那麼它們就不是同一數列,例如數列1,2,3,4,5與數列5,4,3,2,1是不同的數列.

(2)在數列的定義中並沒有規定數列中的數必須不同,因此,在同一數列中可以出現多個相同的數字,如:-1的1次冪,2次冪,3次冪,4次冪,…構成數列:-1,1,-1,1,….

(4)數列的項與它的項數是不同的,數列的項是指這個數列中的某一個確定的數,是一個函數值,也就是相當於f(n),而項數是指這個數在數列中的位置序號,它是自變數的值,相當於f(n)中的n.

(5)次序對於數列來講是十分重要的,有幾個相同的數,由於它們的排列次序不同,構成的數列就不是一個相同的數列,顯然數列與數集有本質的區別.如:2,3,4,5,6這5個數按不同的次序排列時,就會得到不同的數列,而{2,3,4,5,6}中元素不論按怎樣的次序排列都是同一個集合.

2.數列的分類

(1)根據數列的項數多少可以對數列進行分類,分為有窮數列和無窮數列.在寫數列時,對於有窮數列,要把末項寫出,例如數列1,3,5,7,9,…,2n-1表示有窮數列,如果把數列寫成1,3,5,7,9,…或1,3,5,7,9,…,2n-1,…,它就表示無窮數列.

(2)按照項與項之間的大小關系或數列的增減性可以分為以下幾類:遞增數列、遞減數列、擺動數列、常數列.

3.數列的通項公式

數列是按一定次序排列的一列數,其內涵的本質屬性是確定這一列數的規律,這個規律通常是用式子f(n)來表示的,

這兩個通項公式形式上雖然不同,但表示同一個數列,正像每個函數關系不都能用解析式表達出來一樣,也不是每個數列都能寫出它的通項公式;有的數列雖然有通項公式,但在形式上,又不一定是的,僅僅知道一個數列前面的有限項,無其他說明,數列是不能確定的,通項公式更非.如:數列1,2,3,4,…,

由公式寫出的後續項就不一樣了,因此,通項公式的歸納不僅要看它的前幾項,更要依據數列的構成規律,多觀察分析,真正找到數列的內在規律,由數列前幾項寫出其通項公式,沒有通用的方法可循.

再強調對於數列通項公式的理解注意以下幾點:

(1)數列的通項公式實際上是一個以正整數集N_它的有限子集{1,2,…,n}為定義域的函數的表達式.

(2)如果知道了數列的通項公式,那麼依次用1,2,3,…去替代公式中的n就可以求出這個數列的各項;同時,用數列的通項公式也可判斷某數是否是某數列中的一項,如果是的話,是第幾項.

(3)如所有的函數關系不一定都有解析式一樣,並不是所有的數列都有通項公式.

如2的不足近似值,精確到1,0.1,0.01,0.001,0.0001,…所構成的數列1,1.4,1.41,1.414,1.4142,…就沒有通項公式.

(4)有的數列的通項公式,形式上不一定是的,正如舉例中的:

(5)有些數列,只給出它的前幾項,並沒有給出它的構成規律,那麼僅由前面幾項歸納出的數列通項公式並不.

4.數列的圖象

對於數列4,5,6,7,8,9,10每一項的序號與這一項有下面的對應關系:

序號:1234567

項:45678910

這就是說,上面可以看成是一個序號集合到另一個數的集合的映射.因此,從映射、函數的觀點看,數列可以看作是一個定義域為正整集N_或它的有限子集{1,2,3,…,n})的函數,當自變數從小到大依次取值時,對應的一列函數值.這里的函數是一種特殊的函數,它的自變數只能取正整數.

由於數列的項是函數值,序號是自變數,數列的通項公式也就是相應函數和解析式.

數列是一種特殊的函數,數列是可以用圖象直觀地表示的.

數列用圖象來表示,可以以序號為橫坐標,相應的項為縱坐標,描點畫圖來表示一個數列,在畫圖時,為方便起見,在平面直角坐標系兩條坐標軸上取的單位長度可以不同,從數列的圖象表示可以直觀地看出數列的變化情況,但不精確.

把數列與函數比較,數列是特殊的函數,特殊在定義域是正整數集或由以1為首的有限連續正整數組成的集合,其圖象是無限個或有限個孤立的點.

5.遞推數列

一堆鋼管,共堆放了七層,自上而下各層的鋼管數構成一個數列:4,5,6,7,8,9,10.①

數列①還可以用如下方法給出:自上而下第一層的鋼管數是4,以下每一層的鋼管數都比上層的鋼管數多1。

與高一高二不同之處在於,此時復習力學部分知識是為了更好的與高考考綱相結合,尤其水平中等或中等偏下的學生,此時需要進行查漏補缺,但也需要同時提升能力,填補知識、技能的空白。接下來是小編為大家整理的高三數學知識點梳理,希望大家喜歡!

高三數學知識點梳理一

數列是高中數學的重要內容,又是學習高等數學的基礎。高考對本章的考查比較全面,等差數列,等比數列的考查每年都不會遺漏。有關數列的試題經常是綜合題,經常把數列知識和指數函數、對數函數和不等式的知識綜合起來,試題也常把等差數列、等比數列,求極限和數學歸納法綜合在一起。

探索性問題是高考的熱點,常在數列解答題中出現。本章中還蘊含著豐富的數學思想,在主觀題中著重考查函數與方程、轉化與化歸、分類討論等重要思想,以及配方法、換元法、待定系數法等基本數學方法。

近幾年來,高考關於數列方面的命題主要有以下三個方面;

(1)數列本身的有關知識,其中有等差數列與等比數列的概念、性質、通項公式及求和公式。

(2)數列與其它知識的結合,其中有數列與函數、方程、不等式、三角、幾何的結合。

(3)數列的應用問題,其中主要是以增長率問題為主。試題的難度有三個層次,小題大都以基礎題為主,解答題大都以基礎題和中檔題為主,只有個別地方用數列與幾何的綜合與函數、不等式的綜合作為最後一題難度較大。

1.在掌握等差數列、等比數列的定義、性質、通項公式、前n項和公式的基礎上,系統掌握解等差數列與等比數列綜合題的規律,深化數學思想方法在解題實踐中的指導作用,靈活地運用數列知識和方法解決數學和實際生活中的有關問題;
2.在解決綜合題和探索性問題實踐中加深對基礎知識、基本技能和基本數學思想方法的認識,溝通各類知識的聯系,形成更完整的知識網路,提高分析問題和解決問題的能力,

進一步培養學生閱讀理解和創新能力,綜合運用數學思想方法分析問題與解決問題的能力

高三數學知識點梳理二

隨機抽樣

簡介

(抽簽法、隨機樣數表法)常常用於總體個數較少時,它的主要特徵是從總體中逐個抽取;

優點:操作簡便易行

缺點:總體過大不易實行

方法

(1)抽簽法

一般地,抽簽法就是把總體中的N個個體編號,把號碼寫在號簽上,將號簽放在一個容器中,攪拌均勻後,每次從中抽取一個號簽,連續抽取n次,就得到一個容量為n的樣本。

(抽簽法簡單易行,適用於總體中的個數不多時。當總體中的個體數較多時,將總體「攪拌均勻」就比較困難,用抽簽法產生的樣本代表性差的可能性很大)

(2)隨機數法

隨機抽樣中,另一個經常被採用的方法是隨機數法,即利用隨機數表、隨機數骰子或計算機產生的隨機數進行抽樣。

分層抽樣

簡介

分層抽樣主要特徵分層按比例抽樣,主要使用於總體中的個體有明顯差異。共同點:每個個體被抽到的概率都相等N/M。

定義

一般地,在抽樣時,將總體分成互不交叉的層,然後按照一定的比例,從各層獨立地抽取一定數量的個體,將各層取出的個體合在一起作為樣本,這種抽樣方法是一種分層抽樣。

整群抽樣

定義

什麼是整群抽樣

整群抽樣又稱聚類抽樣。是將總體中各單位歸並成若干個互不交叉、互不重復的集合,稱之為群;然後以群為抽樣單位抽取樣本的一種抽樣方式。

應用整群抽樣時,要求各群有較好的代表性,即群內各單位的差異要大,群間差異要小。

優缺點

整群抽樣的優點是實施方便、節省經費;

整群抽樣的缺點是往往由於不同群之間的差異較大,由此而引起的抽樣誤差往往大於簡單隨機抽樣。

實施步驟

先將總體分為i個群,然後從i個群鍾隨即抽取若干個群,對這些群內所有個體或單元均進行調查。抽樣過程可分為以下幾個步驟:

一、確定分群的標注

二、總體(N)分成若干個互不重疊的部分,每個部分為一群。

三、據各樣本量,確定應該抽取的群數。

四、採用簡單隨機抽樣或系統抽樣方法,從i群中抽取確定的群數。

例如,調查中學生患近視眼的情況,抽某一個班做統計;進行產品檢驗;每隔8h抽1h生產的全部產品進行檢驗等。

與分層抽樣的區別

整群抽樣與分層抽樣在形式上有相似之處,但實際上差別很大。

分層抽樣要求各層之間的差異很大,層內個體或單元差異小,而整群抽樣要求群與群之間的差異比較小,群內個體或單元差異大;

分層抽樣的樣本是從每個層內抽取若干單元或個體構成,而整群抽樣則是要麼整群抽取,要麼整群不被抽取。

系統抽樣

定義

當總體中的個體數較多時,採用簡單隨機抽樣顯得較為費事。這時,可將總體分成均衡的幾個部分,然後按照預先定出的規則,從每一部分抽取一個個體,得到所需要的樣本,這種抽樣叫做系統抽樣。

步驟

一般地,假設要從容量為N的總體中抽取容量為n的樣本,我們可以按下列步驟進行系統抽樣:

(1)先將總體的N個個體編號。有時可直接利用個體自身所帶的號碼,如學號、准考證號、門牌號等;

(2)確定分段間隔k,對編號進行分段。當N/n(n是樣本容量)是整數時,取k=N/n;

(3)在第一段用簡單隨機抽樣確定第一個個體編號l(l≤k);

(4)按照一定的規則抽取樣本。通常是將l加上間隔k得到第2個個體編號(l+k),再加k得到第3個個體編號(l+2k),依次進行下去,直到獲取整個樣本。

高三數學知識點梳理三

(一)導數第一定義

設函數y=f(x)在點x0的某個領域內有定義,當自變數x在x0處有增量△x(x0+△x也在該鄰域內)時,相應地函數取得增量△y=f(x0+△x)-f(x0);如果△y與△x之比當△x→0時極限存在,則稱函數y=f(x)在點x0處可導,並稱這個極限值為函數y=f(x)在點x0處的導數記為f'(x0),即導數第一定義

(二)導數第二定義

設函數y=f(x)在點x0的某個領域內有定義,當自變數x在x0處有變化△x(x-x0也在該鄰域內)時,相應地函數變化△y=f(x)-f(x0);如果△y與△x之比當△x→0時極限存在,則稱函數y=f(x)在點x0處可導,並稱這個極限值為函數y=f(x)在點x0處的導數記為f'(x0),即導數第二定義

(三)導函數與導數

如果函數y=f(x)在開區間I內每一點都可導,就稱函數f(x)在區間I內可導。這時函數y=f(x)對於區間I內的每一個確定的x值,都對應著一個確定的導數,這就構成一個新的函數,稱這個函數為原來函數y=f(x)的導函數,記作y',f'(x),dy/dx,df(x)/dx。導函數簡稱導數。

(四)單調性及其應用

1.利用導數研究多項式函數單調性的一般步驟

(1)求f¢(x)

(2)確定f¢(x)在(a,b)內符號(3)若f¢(x)>0在(a,b)上恆成立,則f(x)在(a,b)上是增函數;若f¢(x)<0在(a,b)上恆成立,則f(x)在(a,b)上是減函數

2.用導數求多項式函數單調區間的一般步驟

(1)求f¢(x)

(2)f¢(x)>0的解集與定義域的交集的對應區間為增區間;f¢(x)<0的解集與定義域的交集的對應區間為減區間

高三數學知識點梳理四

1.數列的定義

按一定次序排列的一列數叫做數列,數列中的每一個數都叫做數列的項.

(1)從數列定義可以看出,數列的數是按一定次序排列的,如果組成數列的數相同而排列次序不同,那麼它們就不是同一數列,例如數列1,2,3,4,5與數列5,4,3,2,1是不同的數列.

(2)在數列的定義中並沒有規定數列中的數必須不同,因此,在同一數列中可以出現多個相同的數字,如:-1的1次冪,2次冪,3次冪,4次冪,…構成數列:-1,1,-1,1,….

(4)數列的項與它的項數是不同的,數列的項是指這個數列中的某一個確定的數,是一個函數值,也就是相當於f(n),而項數是指這個數在數列中的位置序號,它是自變數的值,相當於f(n)中的n.

(5)次序對於數列來講是十分重要的,有幾個相同的數,由於它們的排列次序不同,構成的數列就不是一個相同的數列,顯然數列與數集有本質的區別.如:2,3,4,5,6這5個數按不同的次序排列時,就會得到不同的數列,而{2,3,4,5,6}中元素不論按怎樣的次序排列都是同一個集合.

2.數列的分類

(1)根據數列的項數多少可以對數列進行分類,分為有窮數列和無窮數列.在寫數列時,對於有窮數列,要把末項寫出,例如數列1,3,5,7,9,…,2n-1表示有窮數列,如果把數列寫成1,3,5,7,9,…或1,3,5,7,9,…,2n-1,…,它就表示無窮數列.

(2)按照項與項之間的大小關系或數列的增減性可以分為以下幾類:遞增數列、遞減數列、擺動數列、常數列.

3.數列的通項公式

數列是按一定次序排列的一列數,其內涵的本質屬性是確定這一列數的規律,這個規律通常是用式子f(n)來表示的,

這兩個通項公式形式上雖然不同,但表示同一個數列,正像每個函數關系不都能用解析式表達出來一樣,也不是每個數列都能寫出它的通項公式;有的數列雖然有通項公式,但在形式上,又不一定是的,僅僅知道一個數列前面的有限項,無其他說明,數列是不能確定的,通項公式更非.如:數列1,2,3,4,…,

由公式寫出的後續項就不一樣了,因此,通項公式的歸納不僅要看它的前幾項,更要依據數列的構成規律,多觀察分析,真正找到數列的內在規律,由數列前幾項寫出其通項公式,沒有通用的方法可循.

再強調對於數列通項公式的理解注意以下幾點:

(1)數列的通項公式實際上是一個以正整數集N_它的有限子集{1,2,…,n}為定義域的函數的表達式.

(2)如果知道了數列的通項公式,那麼依次用1,2,3,…去替代公式中的n就可以求出這個數列的各項;同時,用數列的通項公式也可判斷某數是否是某數列中的一項,如果是的話,是第幾項.

(3)如所有的函數關系不一定都有解析式一樣,並不是所有的數列都有通項公式.

如2的不足近似值,精確到1,0.1,0.01,0.001,0.0001,…所構成的數列1,1.4,1.41,1.414,1.4142,…就沒有通項公式.

(4)有的數列的通項公式,形式上不一定是的,正如舉例中的:

(5)有些數列,只給出它的前幾項,並沒有給出它的構成規律,那麼僅由前面幾項歸納出的數列通項公式並不.

4.數列的圖象

對於數列4,5,6,7,8,9,10每一項的序號與這一項有下面的對應關系:

序號:1234567

項:45678910

這就是說,上面可以看成是一個序號集合到另一個數的集合的映射.因此,從映射、函數的觀點看,數列可以看作是一個定義域為正整集N_或它的有限子集{1,2,3,…,n})的函數,當自變數從小到大依次取值時,對應的一列函數值.這里的函數是一種特殊的函數,它的自變數只能取正整數.

由於數列的項是函數值,序號是自變數,數列的通項公式也就是相應函數和解析式.

數列是一種特殊的函數,數列是可以用圖象直觀地表示的.

數列用圖象來表示,可以以序號為橫坐標,相應的項為縱坐標,描點畫圖來表示一個數列,在畫圖時,為方便起見,在平面直角坐標系兩條坐標軸上取的單位長度可以不同,從數列的圖象表示可以直觀地看出數列的變化情況,但不精確.

把數列與函數比較,數列是特殊的函數,特殊在定義域是正整數集或由以1為首的有限連續正整數組成的集合,其圖象是無限個或有限個孤立的點.

5.遞推數列

一堆鋼管,共堆放了七層,自上而下各層的鋼管數構成一個數列:4,5,6,7,8,9,10.①

數列①還可以用如下方法給出:自上而下第一層的鋼管數是4,以下每一層的鋼管數都比上層的鋼管數多1。

與高一高二不同之處在於,此時復習力學部

㈤ 高中數學知識點有哪些

01
高中數學是全國高中生學習的一門學科。包括《集合與函數》《三角函數》《不等式》《數列》《立體幾何》《平面解析幾何》等部分, 高中數學主要分為代數和幾何兩大部分。代數主要是一次函數,二次函數,反比例函數和三角函數。幾何又分為平面解析幾何和立體幾何兩大部分。

平面解析幾何初步:
(1)直線與方程
1在平面直角坐標系中,結合具體圖形,探索確定直線位置的幾何要素。
2理解直線的傾斜角和斜率的概念,經歷用代數方法刻畫直線斜率的過程,掌握過兩點的直線斜率的計算公式。
3能根據斜率判定兩條直線平行或垂直。
4根據確定直線位置的幾何要素,探索並掌握直線方程的幾種形式(點斜式、兩點式及一般式),體會斜截式與一次函數的關系。
5能用解方程組的方法求兩直線的交點坐標。
6探索並掌握兩點間的距離公式、點到直線的距離公式,會求兩條平行直線間的距離。
(2)圓與方程
1回顧確定圓的幾何要素,在平面直角坐標系中,探索並掌握圓的標准方程與一般方程。
2能根據給定直線、圓的方程,判斷直線與圓、圓與圓的位置關系。
3能用直線和圓的方程解決一些簡單的問題。
(3)在平面解析幾何初步的學習過程中,體會用代數方法處理幾何問題的思想。
(4)空間直角坐標系
1通過具體情境,感受建立空間直角坐標系的必要性,了解空間直角坐標系,會用空間直角坐標系刻畫點的位置。
2通過表示特殊長方體(所有棱分別與坐標軸平行)頂點的坐標,探索並得出空間兩點間的距離公式。

㈥ 高中數學有多少個知識點

高中數學有130個知識點,從前一份試卷要考查90個知識點,覆蓋率達70%左右,而且把這一項作為衡量試捲成功與否的標准之一.這一傳統近年被打破,取而代之的是關注思維,突出能力,重視思想方法和思維能力的考查.
現在的我們學數學比前人幸福啊!!

㈦ 高中數學知識點有多少

高中數學重點是函數,高考佔70%多。
集合是研究函數的基礎,
方程、不等式是研究函數的手段,
函數分冪函數、指數函數、對數函數、三角函數、反三角函數等,有著豐富的性質。
數列,其實也是函數。

當然,對於高考,所有知識都重要,比如立體幾何、解析幾何、向量、概率等。

閱讀全文

與高中數學基礎概念有多少相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:739
乙酸乙酯化學式怎麼算 瀏覽:1404
沈陽初中的數學是什麼版本的 瀏覽:1350
華為手機家人共享如何查看地理位置 瀏覽:1042
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:884
數學c什麼意思是什麼意思是什麼 瀏覽:1408
中考初中地理如何補 瀏覽:1299
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:701
數學奧數卡怎麼辦 瀏覽:1387
如何回答地理是什麼 瀏覽:1023
win7如何刪除電腦文件瀏覽歷史 瀏覽:1055
大學物理實驗干什麼用的到 瀏覽:1484
二年級上冊數學框框怎麼填 瀏覽:1699
西安瑞禧生物科技有限公司怎麼樣 瀏覽:969
武大的分析化學怎麼樣 瀏覽:1247
ige電化學發光偏高怎麼辦 瀏覽:1337
學而思初中英語和語文怎麼樣 瀏覽:1650
下列哪個水飛薊素化學結構 瀏覽:1423
化學理學哪些專業好 瀏覽:1486
數學中的棱的意思是什麼 瀏覽:1057