⑴ 數學建模的真正意義
http://www.mcm.e.cn/
這個網站叫中國大學生數學建模競賽網,該網站內能解答你所有關於數學建模方面的疑問。
【摘要】本文重點分析了數學建模的特點,探討了計算機應用與數學建模意識的培養之間密不可分的聯系,闡述了計算機在數學建模競賽中的作用和地位,最後介紹了筆者參加建模競賽與學生參加競賽的經驗與感受。
【關鍵詞】建模意識 計算機應用 數學建模競賽 數學實驗
一、引言
在利用數學方法分析和解決實際問題時,要求從實際錯綜復雜的關系中找出其內在的規律,然後用數學的語言--即數字、公式、圖表、符號等刻畫和描述出來,然後經過數學與計算機的處理--即計算、迭代等得到定量的結果,供人們進行分析、預報、決策和控制,這種把實際問題進行合理的簡化假設歸結為數學問題並求解的過程就是建立數學模型,簡稱建模。而這種成功的方法和技術反映在培養專門人才的大學教學活動中,就是數學建模教學和競賽。數學建模簡而言之就是應用數學模型來解決各種實際問題的過程,也就是通過對實際問題的抽象、簡化、確定變數和參數,並應用某些規律建立變數與參數間的關系的數學問題(或稱一個數學模型),再借用計算機求解該數學問題,並解釋、檢驗、評價所得的解,從而確定能否將其用於解決實際問題的多次循環、不斷深化的過程。
二、數學建模的特點
從1985年開始美國都會舉辦一年一度的數學建模競賽(MathematicalContestinModeling,縮寫:MCM),而我國自1992年舉辦首屆全國大學生數學建模競賽以來,它已經成為全國大學生科技競賽的重要項目之一,全國大學生數學建模競賽是面向全國大學生的群眾性科技活動;競賽要求學生(可以是任何專業)以三人為一組參加競賽,可以自由的收集信息、調查研究,包括使用計算機和任何軟體,甚至上網查詢,但不得與團隊以外的任何人討論,在三天時間內,完成一篇包括模型的假設、建立、求解,計算方法的設計和用計算機對解的實現,以及結果的分析和檢驗,模型的改進等方面的論文。這一活動對於提高大學生素質,促進高校數學與計算機教學改革都起著積極的推動作用。
多年來,一年一度的全國大學生數學建模競賽和國際大學生數學建模競賽,給傳統的高等數學教育改革帶來了新的思路和評價標准,《數學建模》課也從僅僅為參賽隊員培訓,擴展為一門比較普及的選修課,同時,《數學試驗》作為一門新的課程也應運而生。數學建模與數學試驗教學的重點是高等與現代數學的深層應用和面向問題的設計,而不是經典理論的深入研討和系統論證。數學建模問題絕大部分來自一些具體的科研課題或實際工程問題,而不同於普通的數學習題或競賽題。數學建模問題的特點是:面向現實生活的應用,有相關的科研背景,綜合性強,涉及面廣,因素關系復雜,缺乏足夠的規范性,難以套用傳統成熟的解決手段,數據量龐大,可採取的演算法也比較復雜,結果具有一定的彈性空間,需要一定的伴隨條件,許多問題得到的只能是近似解。
另一方面,建模問題不同於理論研究,它重在對實際問題的處理,而不是深層次純粹數學理論或者世界難題。所以,求解建模問題大都藉助各種輔助工具或手段,尤其是計算機軟體的應用,大大地提高了解題效率和質量。總之,《數學建模》是一門技術應用的課程,而不是基礎教育課程,它強調的是如何更好更快地解決問題,如何充分利用各種科技手段作為技術支持,因而計算機的應用已經成為其不可或缺的一項基本組成。與此相關的計算機技術主要有兩部分:一是如何將實際問題或模型轉化或表述為可用計算機軟體或編程實現的演算法;二是採用哪些應用軟體或編程技術可以解決這些問題。顯然,後者是前者的基礎,確定了工具方案,才有相應的解決方案。
由於數學建模的以上特點,決定了數學建模與計算機具有密切相關的聯系,計算機在數學建模思想意識培養中發揮了重要的作用,主要是提供了有力工具和技術支持,它是更好更快進行建模的基礎。計算機水平的高低可以說決定一個團隊整體的建模水平。
三、數學建模與計算機的關系
計算機的產生正是數學建模的產物,20紀40年代,美國為了研究彈道導彈飛行軌跡的問題,迫切需要一種計算工具來代替人工計算,計算機在這樣的背景下應運而生。計算機的產生與發展又極大地推動了數學建模活動,計算機高速的運算能力,非常適合數學建模過程中的數值計算;它的大容量貯存能力以及網路通訊功能,使得數學建模過程中資料存貯、檢索變得方便有效;它的多媒體化,使得數學建模中一些問題能在計算機上進行更為逼真的模擬實驗;它的智能化,能隨時提醒、幫助我們進行數學模型求解。此外,如Mathlab、Maple、SAS、SPSS等一批優秀數學軟體的出現更使數學建模如虎添翼。再者,數學建模與生活實際密切相關,所採集到的數據量多,而且比較復雜,比如DVD在線租賃,長江水質的評價和預測,銀行貸款和分期付款等,往往計算量大,需要藉助於計算機才能快捷、簡便地完成。數學建模競賽與以往所說的那種數學競賽(純數學競賽)不同,它要用到計算機,甚至離不開計算機,但卻又不是純粹的計算機競賽,它涉及到物理、化學、生物、醫學、電子、農業、軍事、管理等各學科、各領域,但又不受任何一個具體的學科、領域的限制。數學建模過程需要經過模型假設、模型建立、模型求解、模型分析與檢驗、模型應用等幾個步驟,在這些步驟中都伴隨著計算機的使用。例如,模型求解時,需要上機計算、編制軟體、繪制圖形等,數學建模競賽中列印機隨時可能使用,同時,數學建模的學習對計算機能力的培養也起著極大推動作用,如報考計算機方向的研究生時,對數學的要求非常高;在進行計算機科學的研究時,也要求有極強的數學功底才能寫出具有相當深度的論文,計算機科學的發展也是建立在數學基礎之上的,許多為計算機的發展做出傑出貢獻的科學家都出身於數學專業,顯而易見,比賽中的一個重要環節是使用計算機來解決問題,這對使用計算機的能力的提高是很明顯的。
數學建模的目的是構建數學建模意識,培養學生創造性思維能力,在諸多的思維活動中,創新思維是最高層次的思維活動,是開拓性、創造性人才所必須具備的能力,培養創造性思維能力,主要應培養學生靈活運用基本理論解決實際問題的能力,在數學教學中培養學生的建模意識實質上是培養、發展學生的創造性思維能力,因為建模活動本身就是一項創造性的思維活動,它既具有一定的理論性,又具有較強的實踐性,還要求思維的深刻性和靈活性,而且在建模活動過程中,能培養學生獨立、自覺地運用所給問題的條件,尋求解決問題的最佳方法和途徑,可以培養學生的想像能力、直覺思維、猜測、轉換、構造等能力,而這些數學能力正是創造性思維所具有的最基本的特徵,在培養創新思維過程中要求必須具有一定的計算機基礎,只有具有一定的計算機知識才能更好的處理數據,發現事物之間的內在的聯系,才能更好的進行知識的轉換,才能更好的構造出最優的模型。總之,具有必備的計算機知識是培養建模意識的關鍵,是培養數模創新能力的前提。計算機也為數學建模競賽活動提供了有力的工具。
四、計算機在數學建模中的運用
計算機的運用,不僅方便我們上網查找建模問題所涉及的知識,相關的文獻資料,而且方便我們處理數據,進行模型求解,模型檢驗。
建模相關計算機軟體是我們在建立模型,處理模型必需掌握的軟體,他們各有自己的特點,使用他們時要注意區分他們的優缺點,選擇更合適的軟體來處理問題,常用軟體包含一下幾種類型:
1、通用數學軟體。主要包括有Matlab、Mathematica、Maple和Mathcad等,在能力和用法上,都比較相近,主要用於繪制已知函數的圖形和進行計算,支持完全的符號運算、精確計算和任意精度的近似計算。它們都能對數學中的微積分、解析幾何、線性代數、微分方程、計算方法、概率統計等諸多領域的常見問題進行求解,但也有各自特點:例如Mathematica的符號計算能力較為強大,而Matlab在數值計算、矩陣計算和圖形繪制方面更有優勢,因此可以結合起來使用。
2、Lingo/Lindo 計算最優化問題的專用數學軟體。Lindo用於求解線性規劃和二次規劃,Lingo除了具有Lindo的全部功能外,還可以用於求解非線性規劃,也可以用於一些線性和非線性方程組的求解以及代數方程求根等,二者都可以求解整數規劃。。
3、統計分析軟體,SPSS名為社會學統計軟體包,主要功能有:基本統計分析、定義表、比較平均數;一般線性模式;相關分析;回歸分析、邏輯線性分析、聚類和判別分析、因子分析、非參數檢驗、時間序列、比例、多元反應等。SAS提供許多資料庫查詢統計功能,在概率和統計的經典處理計算方面提供了豐富的函數支持。是統計專業軟體。
4、高級程序語言種類較多,如C、C++、C#、Basic、Delphi和Java等。
5、繪圖軟體。將一些圖表加入附件可以為文章增色。數學軟體只能繪制已知函數的圖形,若是要繪制一個大致的圖形,就必須使用繪圖軟體。可以使用幾何畫板、Photoshop、Flash等。因此,數學建模競賽今後的趨勢是,要求學生對各方面的知識都有所了解,對學生的計算機知識要求也更高,近年來的數學建模競賽幾乎所有的競賽題目都涉及大量的計算或邏輯運算,因此不掌握計算機和相關數學軟體的使用是難以取得好成績的;又由於競賽題目來自不同的領域,事先又不了解,而利用Internet可以迅速查到相關資料,這也有助於在競賽中取得好成績,由此可見,計算機和數學建模之間具有密不可分的聯系,兩者的有機結合,有效的提高了高校學生靈活運用理論知識的能力、知識的遷移能力、實際應用能力以及分析問題和解決問題。
五、結束語
筆者上大學期間參加了兩次數模競賽,近幾年也參加了學院的數學建模競賽輔導,能夠深刻從中體會到其中的酸甜,也領悟到數學建模競賽的精髓;它不僅有利於學生更好的掌握知識、運用知識,也有利於高校的科研和教學,使學生和教師能在平時的學習、工作中自動形成勤於思考的好習慣,數學建模競賽與學生畢業以後工作時的條件非常相近,是對學生業務、能力和素質的全面培養,特別是開放性思維和創新意識,這項活動的開展有利於學生的全面素質的培養,既豐富、活躍了廣大學生的課外生活,也為優秀學員脫穎而出創造了條件。不少參賽培訓的同學有共同的體會,一次參賽終身受益。數學建模是通向未來的成功之路,不管名次如何,每個參賽者都是成功者。總之,利用計算機技術來開展數學建模,必將有利於數學模型的建立、求解、演算和表達,為探索者創造出理想的背景,同時也使我們的計算機用得越來越好、越來越活,數學建模中計算機的應用,使數學建模的進步如虎添翼;計算機中數學建模方法的使用,使得計算機的發展日益迅速,計算機技術與數學建模的結合,必將推動兩者的快速發展。
⑵ 在控制系統分析中,為什麼一定要建立數學模型
-般說來建立數學模型的方法大體上可分為兩大類、一類是機理分析方法,一類是測試分析方法.機理分析是根據對現實對象特性的認識、分析其因果關系,找出反映內部機理的規律,建立的模型常有明確的物理或現實意義. 下面給出建模的-般步驟: 模型准備 首先要了解問題的實際背景,明確建模的目的搜集建模必需的各種信息如現象、數據等,盡量弄清對象的特徵,由此初步確定用哪一類模型,總之是做好建模的准備工作.情況明才能方法對,這一步一定不能忽視,碰到問題要虛心向從事實際工作的同志請教,盡量掌握第一手資料. 模型假設 根據對象的特徵和建模的目的,對問題進行必要的、合理的簡化,用精確的語言做出假設,可以說是建模的關鍵一步.一般地說,一個實際問題不經過簡化假設就很難翻譯成數學問題,即使可能,也很難求解.不同的簡化假設會得到不同的模型.假設作得不合理或過份簡單,會導致模型失敗或部分失敗,於是應該修改和補充假設;假設作得過分詳細,試圖把復雜對象的各方面因素都考慮進去,可能使你很難甚至無法繼續下一步的工作.通常,作假設的依據,一是出於對問題內在規律的認識,二是來自對數據或現象的分析,也可以是二者的綜合.作假設時既要運用與問題相關的物理、化學、生物、經濟等方面的知識,又要充分發揮想像力、洞察力和判斷力,善於辨別問題的主次,果斷地抓住主要因素,舍棄次要因素,盡量將問題線性化、均勻化.經驗在這里也常起重要作用.寫出假設時,語言要精確,就象做習題時寫出已知條件那樣. 模型構成 根據所作的假設分析對象的因果關系,利用對象的內在規律和適當的數學工具,構造各個量(常量和變數)之間的等式(或不等式)關系或其他數學結構.這里除需要一些相關學科的專門知識外,還常常需要較廣闊的應用數學方面的知識,以開拓思路.當然不能要求對數學學科門門精通,而是要知道這些學科能解決哪一類問題以及大體上怎樣解決.相似類比法,即根據不同對象的某些相似性,借用已知領域的數學模型,也是構造模型的一種方法.建模時還應遵循的一個原則是,盡量採用簡單的數學工具,因為你建立的模型總是希望能有更多的人了解和使用,而不是只供少數專家欣賞. 模型求解 可以採用解方程、畫圖形、證明定理、邏輯運算、數值計算等各種傳統的和近代的數學方法,特別是計算機技術. 模型分析 對模型解答進行數學上的分析,有時要根據問題的性質分析變數間的依賴關系或穩定狀況,有時是根據所得結果給出數學上的預報,有時則可能要給出數學上的最優決策或控制,不論哪種情況還常常需要進行誤差分析、模型對數據的穩定性或靈敏性分析等. 模型檢驗 把數學上分析的結果翻譯回到實際問題,並用實際的現象、數據與之比較,檢驗模型的合理性和適用性.這一步對於建模的成敗是非常重要的,要以嚴肅認真的態度來對待.當然,有些模型如核戰爭模型就不可能要求接受實際的檢驗了.模型檢驗的結果如果不符合或者部分不符合實際,問題通常出在模型假設上,應該修改、補充假設,重新建模.有些模型要經過幾次反復,不斷完善,直到檢驗結果獲得某種程度上的滿意. 模型應用 應用的方式自然取決於問題的性質和建模的目的,這方面的內容不是本書討論的范圍。 應當指出,並不是所有建模過程都要經過這些步驟,有時各步驟之間的界限也不那麼分明.建模時不應拘泥於形式上的按部就班,本書的建模實例就採取了靈活的表述方式.
⑶ 數學建模的目的和方法
目的:數學模型(Mathematical Model)是一種模擬,是用數學符號、數學式子、程序、圖形等對實際課題本質屬性的抽象而又簡潔的刻劃,它或能解釋某些客觀現象,或能預測未來的發展規律,或能為控制某一現象的發展提供某種意義下的最優策略或較好策略。數學模型一般並非現實問題的直接翻版,它的建立常常既需要人們對現實問題深入細微的觀察和分析,又需要人們靈活巧妙地利用各種數學知識。這種應用知識從實際課題中抽象、提煉出數學模型的過程就稱為數學建模(Mathematical Modeling)
方法:模型准備
了解問題的實際背景,明確其實際意義,掌握對象的各種信息。以數學思想來包容問題的精髓,數學思路貫穿問題的全過程,進而用數學語言來描述問題。要求符合數學理論,符合數學習慣,清晰准確。
模型假設
根據實際對象的特徵和建模的目的,對問題進行必要的簡化,並用精確的語言提出一些恰當的假設。
模型建立
在假設的基礎上,利用適當的數學工具來刻劃各變數常量之間的數學關系,建立相應的數學結構(盡量用簡單的數學工具)。
模型求解
利用獲取的數據資料,對模型的所有參數做出計算(或近似計算)。
模型分析
對所得的結果進行數學上的分析。
模型檢驗
將模型分析結果與實際情形進行比較,以此來驗證模型的准確性、合理性和適用性。如果模型與實際較吻合,則要對計算結果給出其實際含義,並進行解釋。如果模型與實際吻合較差,則應該修改假設,再次重復建模過程。
模型應用
應用方式因問題的性質和建模的目的而異。
⑷ 經濟學論文為什麼一定要數學模型
不只是經濟學論文,大部分科目的論文,都離不開數學模型。
數學模型,從根本上講,就是一系列數據關系。
論文分為定性論文和定量論文。在較為嚴謹的科目中,定性論文通常只作為開題論文有較高的價值,具體分析的論文,如果沒有數學模型,缺少計算上的論據論證,那麼論證內容會很蒼白,缺乏說服力。定量論文就必然存在數據關系,這就是數學模型。只是有的時候,數據類型少,關系不復雜,在論證過程中很自然就帶出了這些關系,沒有可以強調數學模型。而關系復雜的論證,不將數學模型抽出來單獨說明,讀者很難理解。
經濟學論文,除非開創新的理論體系,否則必然是在現有的供求關系等模型基礎上的擴展,復雜度絕對不低,數學模型必然會需要單獨說明。
⑸ 確定演算法之前為什麼要建立數學模型
演算法就像肌肉,模型就像骨頭
骨頭有了,肌肉再往上放,
不是先有肌肉再加骨頭.....
演算法只是用來執行模型中的假設,進而得出結論,
如果連假設(基本思路)都沒有,怎麼談使用
⑹ 數學建模的意義是什麼
數學建模的意義:要讓計算機理解問題是什麼,就需要建立現實問題的數學模型,設計合適的數據結構,數學建模的本質就是:提取操作對象-找出對象間的關系-用數學語言進行描述。
參考資料:《大學計算機-計算思維導論》,清華大學出版社2019
⑺ 數學建模的意義是什麼
數學建模是一種數學的思考方法,是運用數學的語言和方法,通過抽象、簡化建立能近似刻畫並"解決"實際問題的一種強有力的數學手段。
數學建模就是用數學語言描述實際現象的過程。這里的實際現象既包涵具體的自然現象比如自由落體現象,也包含抽象的現象比如顧客對某種商品所取的價值傾向。這里的描述不但包括外在形態,內在機制的描述,也包括預測,試驗和解釋實際現象等內容。
我們也可以這樣直觀地理解這個概念:數學建模是一個讓純粹數學家(指只懂數學不懂數學在實際中的應用的數學家)變成物理學家,生物學家,經濟學家甚至心理學家等等的過程。
數學模型一般是實際事物的一種數學簡化。它常常是以某種意義上接近實際事物的抽象形式存在的,但它和真實的事物有著本質的區別。要描述一個實際現象可以有很多種方式,比如錄音,錄像,比喻,傳言等等。為了使描述更具科學性,邏輯性,客觀性和可重復性,人們採用一種普遍認為比較嚴格的語言來描述各種現象,這種語言就是數學。使用數學語言描述的事物就稱為數學模型。有時候我們需要做一些實驗,但這些實驗往往用抽象出來了的數學模型作為實際物體的代替而進行相應的實驗,實驗本身也是實際操作的一種理論替代。
⑻ 何謂自動控制系統的數學模型建立數學模型的目的何在
自控系統的數學模型主要包括被控對象的數學模型與校正裝置的數學模型。設計自控系統的目的在於令系統在某種控制量輸入時獲得需要的被控量輸出,比如對一個直流電機調速系統而言,輸入的控制量是電樞電壓,而輸出的被控量是電機轉速(或轉矩),我們設計系統的目的就是當輸入特定的電壓時可以得到需要的轉速。那麼到底多高的電壓(輸入量)對應多高的轉速(輸出量)呢?使用如微分方程等數學語言描述輸出對應輸入的關系就叫建立數學模型。而數學模型的作用在於:1.描述被控對象自身特性;2.根據被控對象的特性定量的設計校正環節;3.用於分析整個系統的性能指標,作為系統是否達標的判斷標准。