Ⅰ 數學中的「配方法」怎麼配方
在基本代數中,配方法是一種用來把二次多項式化為一個一次多項式的平方與一個常數的和的方法。這種方法是把以下形式的多項式化為以上表達式中的系數a、b、c、d和e,它們本身也可以是表達式,可以含有除x以外的變數。配方法通常用來推導出二次方程的求根公式:我們的目的是要把方程的左邊化為完全平方。由於問題中的完全平方具有(x+y)2=x2+ 2xy+y2的形式,可推出2xy= (b/a)x,因此y=b/2a。等式兩邊加上y2= (b/2a)2,可得:
這個表達式稱為二次方程的求根公式。
解方程
在一元二次方程中,配方法其實就是把一元二次方程移項之後,在等號兩邊都加上一次項系數絕對值一半的平方。
【例】解方程:2x²+6x+6=4
分析:原方程可整理為:x²+3x+3=2,通過配方可得(x+1.5)²=1.25通過開方即可求解。
解:2x²+6x+6=4
<=>(x+1.5)²=1.25
x+1.5=1.25的平方根
Ⅱ 數學中配方的公式是什麼
配方法是對數學式子進行一種定向變形(配成「完全平方」)的技巧,通過配方找到已知和未知的聯系,從而化繁為簡。何時配方,需要我們適當預測,並且合理運用「裂項」與「添項」、「配」與「湊」的技巧,從而完成配方。有時也將其稱為「湊配法」。
如果二次項系數不為一,先化為一,之後把常數項移到等號右邊,最後在等號兩邊都加上一次項系數一半的平方,就可以了。
1、一般情況下,四則運算的計算順序是:有括弧時,先算括弧裡面的;只有同一級運算時,從左往右;含有兩級運算,先算乘除後算加減。
2、由於有的計算題具有它自身的特徵,這時運用運算定律,可以使計算過程簡單,同時又不容易出錯。
加法交換律:a+b=b+a
乘法交換律:a×b=b×a
加法結合律:(a+b)+c=a+(b+c)
乘法結合律:(a×b)×c=a×(b×c)
Ⅲ 數學中配方法是指什麼
配方法是解一元二次方程的一種方法。配方法就是將一元二次方程由一般式ax²+bx+c=0化成(x+m)²=n,然後利用直接開平方法計算一元二次方程的解的過程;其過程可總結為五步:一消,二配,三移,四開,五計算結果。配方法過程較,一般解一元二次方程時不建議使用此方法,但是解應用題或者一元二次圖像的時候又很重要。在公式法中用到的求根公式也可由此方法得到。
Ⅳ 數學配方法是什麼配方法的步驟有哪些
通過配成完全平方式的方法,得到一元二次方程的根的方法.這種解一元二次方程的方法稱為配方法,配方的依據是完全平方公式.同時也是數學一元二次方程中的一種解法。
配方法的步驟
1.轉化:將此一元二次方程化為ax^2+bx+c=0的形式(即一元二次方程的一般形式)化為一般形式
2.移項:常數項移到等式右邊
3.系數化1:二次項系數化為1
4.配方:等號左右兩邊同時加上一次項系數一半的平方
5.用直接開平方法求解 整理 (即可得到原方程的根)
代數式表示方法:注(^2是平方的意思.) ax^2+bx+c=a(x+b/2a)^2+(4ac-b^2)/4a=a[(x+m)^2-n^2]=a(x+m+n)*(x+m-n)
Ⅳ 數學中配方是什麼
配方法是對數學式子進行一種定向變形(配成「完全平方」)的技巧,通過配方找到已知和未知的聯系,從而化繁為簡。何時配方,需要我們適當預測,並且合理運用「裂項」與「添項」、「配」與「湊」的技巧,從而完成配方。有時也將其稱為「湊配法」。
配方法使用的最基本的配方依據是二項完全平方公式(a+b) =a +2ab+b ,將這個公式靈活運用,可得到各種基本配方形式,如:
a +b =(a+b) -2ab=(a-b) +2ab;
a +ab+b =(a+b) -ab=(a-b) +3ab=(a+ ) +( b) ;
a +b +c +ab+bc+ca= [(a+b) +(b+c) +(c+a) ]
a +b +c =(a+b+c) -2(ab+bc+ca)=(a+b-c) -2(ab-bc-ca)
Ⅵ 數學配方。。
(x²-2x)+(y²-8y)=-13
(x²-2x+1)+(y²-8y+16)=-13+1+16
(x-1)²+(y-4)²=2²
∴(x,y)在平面直角坐標系中表示以點(1,4)為圓心,2為半徑的圓上的點