導航:首頁 > 數字科學 > 感測器數學模型的一般描述方法有哪些

感測器數學模型的一般描述方法有哪些

發布時間:2022-12-29 23:39:27

① 一般數學模型的驗證有哪些方法

數學建模應當掌握的十類演算法

1.蒙特卡羅演算法
該演算法又稱隨機性模擬演算法,是通過計算機模擬來解決問題的演算法,同時可以通過模擬可以來檢驗自己模型的正確性,是比賽時必用的方法。
2.數據擬合、參數估計、插值等數據處理演算法
比賽中通常會遇到大量的數據需要處理,而處理數據的關鍵就在於這些演算法,通常使用Matlab作為工具。
3.線性規劃、整數規劃、多元規劃、二次規劃等規劃類問題
建模競賽大多數問題屬於最優化問題,很多時候這些問題可以用數學規劃演算法來描述,通常使用Lindo、Lingo軟體實現。
4.圖論演算法
這類演算法可以分為很多種,包括最短路、網路流、二分圖等演算法,涉及到圖論的問題可以用這些方法解決,需要認真准備。
5.動態規劃、回溯搜索、分治演算法、分支定界等計算機演算法
這些演算法是演算法設計中比較常用的方法,很多場合可以用到競賽中。
6.最優化理論的三大非經典演算法:模擬退火法、神經網路、遺傳演算法
這些問題是用來解決一些較困難的最優化問題的演算法,對於有些問題非常有幫助,但是演算法的實現比較困難,需慎重使用。
7.網格演算法和窮舉法
網格演算法和窮舉法都是暴力搜索最優點的演算法,在很多競賽題中有應用,當重點討論模型本身而輕視演算法的時候,可以使用這種暴力方案,最好使用一些高級語言作為編程工具。
8.一些連續離散化方法
很多問題都是實際來的,數據可以是連續的,而計算機只認的是離散的數據,因此將其離散化後進行差分代替微分、求和代替積分等思想是非常重要的。
9.數值分析演算法
如果在比賽中採用高級語言進行編程的話,那一些數值分析中常用的演算法比如方程組求解、矩陣運算、函數積分等演算法就需要額外編寫庫函數進行調用。
10.圖象處理演算法
賽題中有一類問題與圖形有關,即使與圖形無關,論文中也應該要不乏圖片的,這些圖形如何展示以及如何處理就是需要解決的問題,通常使用Matlab進行處理。

② 自動控制系統中數學模型的作用及常見形式有哪些

在控制系統的分析和設計中,首先要建立系統的數學模型.控制系統的數學模型是描述系統內部物理量(或變數)之間關系的數學表達式.在靜態條件下(即變數各階導數為零),描述變數之間關系的代數方程叫靜態數學模型;而描述變數各階導數之間關系的微分方程叫數學模型.如果已知輸入量及變數的初始條件,對微分方程求解就可以得到系統輸出量的表達式,並由此可對系統進行性能分析.因此,建立控制系統的數學模型是分析和設計控制系統的首要工作
建立控制系統數學模型的方法有分析法和實驗法兩種.分析法是對系統各部分的運動機理進行分析,根據它們所依據的物理規律或化學規律分別列寫相應的運動方程.例如,電學中有基爾霍夫定律,力學中有牛頓定律,熱力學中有熱力學定律等.實驗法是人為地給系統施加某種測試信號,記錄其輸出響應,並用適當的數學模型去逼近,這種方法稱為系統辨識.近幾年來,系統辨識已發展成一門獨立的學科分支,本章重點研究用分析法建立系統數學模型的方法.
在自動控制理論中,數學模型有多種形式.時域中常用的數學模型有微分方程、差分方程和狀態方程;復數域中有傳遞函數、結構圖;頻域中有頻率特性等.

③ 感測器工作的物理基礎的基本定律和法則主要有哪些類型

之所以具有能量信息轉換的機能,在於它的工作機理是基於各種物理的、化學的和生物的效應並受相應的定律和法則所支配,了解這些定律和法則有助於我們對感測器本質的理解和對新效應感測器的開發。
作為感測器工作物理基礎的基本定律大致有以下四種類型:
1)守恆定律:包括能量,動量、電荷量等守恆定律。這些定律,是我們探索,研製新型感測器時或在分析、綜合現有感測器時,都必須嚴格遵守的基本法則。
2)場的定律:包括動力場的運動定律、電磁場的感應定律等,其作用與物體在空間的位置及分布狀態有關。一般可由物理方程給出,這些方程可作為許多感測器工作的數學模型。例如:利用靜電場定律研製的電容式感測器,利用電磁感應定律研製的電感(自感或互感)式感測器,利用運動定律與電磁感應定律研製的電動式傳惑器等等。利用場的定律構成的感測器,可統稱為 結構型感測器 。
3)物質定律:它是表示各種物質本身內在性質的定律(如虎克定律、歐姆定律等),通常以這種物質所固有的物理常數加以描述。因此,這些常數的大小決定著感測器的主要性能。如:利用半導體物質法則的壓阻、熱阻、光阻,濕阻等效應,可分別做成壓敏,熱敏,光敏,濕敏等器件,利用壓電晶體物質法則 壓電效應,可製成壓電感測器等等。這種基於物質定律的感測器,可統稱為 物性型感測器 。這是當代感測器技術領域中具有廣闊發展前景的感測器。
4)統計法則:它是把微觀系統與宏觀系統聯系起來的物理法則。這些法則,常常與感測器的工作狀態有關,它是分析某些感測器的理論基礎。這方面的研究尚待進一步深入。

④ 數學建模都要用到那些方法啊

隨著科學技術的迅速發展,數學模型這個詞彙越來越多地出現在現代人的生產、工作和社會活動中。電氣工程師必須建立所要控制的生產過程的數學模型,用這個模型對控制裝置作出相應的設計和計算,才能實現有效的過程式控制制;氣象工作者為了得到准確的天氣預報,一刻也離不開根據氣象站、氣象衛星匯集的氣壓、雨量、風速等資料建立的數學模型;生理醫學家有了葯物濃度在人體內隨時間和空間變化的數學模型,就可以分析葯物的療效,有效地指導臨床用葯;廠長經理們要是能夠根據產品的需求狀況、生產條件和成本、貯存費用等信息,籌劃出一個合理安排生產和銷售的數學模型,一定可以獲得更大的經濟效益。對於廣大的科學技術人員和應用數學工作者來說,建立數學模型是溝通擺在面前的實際問題與他們掌握的數學工具之間的一座必不可少的橋梁。

那麼,什麼是數學模型,又是如何建立起這些形形色色的數學模型的呢?就讓我們走近數學模型看一看吧!

原型與模型

原型(Prototype):人們在現實世界裡關心、研究或者生產、管理的實際對象。

模型(Model):為特定的目的,將原型的某一部分信息簡縮、提煉而構造的原型替代物。

數學模型:對於現實世界的一個特定對象,為了一個特定目的,根據特有的內在規律,做出一些必要的簡化假設,運用適當的數學工具,得到的一個數學結構。

注意數學模型(Mathematical Model)與數學建模(Mathematical Modelling)之間的聯系與區別。

建立數學模型的方法

一般說來建立數學模型可以分為表述、求解、解釋、驗證幾個階段,並且通過這些階段完成從現實對象到數學模型,再從數學模型回到現實對象。建立數學模型沒有固定的模式。一般這一過程可以如圖所示的幾個步驟:

數學模型的分類

基於不同的出發點可以有各種不同的分法:

按照模型的應用領域分:如人口模型、交通模型、環境模型、生態模型、城鎮規劃模型、水資源模型、再生資源利用模型、污染模型等。范疇更大一些則形成許多邊緣學科如生物數學、醫學數學、地質數學、數量經濟學、數學社會學等。

按照建立模型的方法分:如初等數學模型、幾何模型、微分方程模型、圖論模型、馬氏鏈模型、規劃論模型等。

按照模型的表現特性又有幾種分法:

確定行模型和隨機性模型 取決於是否考慮隨機因素的影響。近幾年來隨著數學的發展,又有所謂突變性模型和模糊性模型。

靜態模型和動態模型 取決於是否考慮隨機因數引起的變化。

離散模型和連續模型 指模型中的變數(主要是時間變數)取為離散是連續的。

線性模型和連續模型 取決於模型的基本關系,如微分方程是否是的。

按照建模目的分。有描述模型、分析模型、預報模型、優化模型、決策模型、控制模型等。

按照對模型的了解程度分。有所謂白箱模型、灰箱模型、黑箱模型等。它們分別意

味著人們對原型的內在機理了解清楚、不太清楚和不清楚。

數學模型的作用

數學是研究現實世界中的數量關系和空間形式的科學。它的產生和許多重大發展都和現實世界的生產活動和其他相應的學科的需要密切相關的。一般的說,當實際問題需要我們對所研究的現實對象提供分析、預報、決策、控制等方面的定量結果時,往往都離不開數學的應用,而建立數學模型則是這個過程的關鍵環節。

分析 通常是指定量研究現實對象的某種現象,或定量描述某種特性。例如 研究不同種群的生物在同一自然環境下生存時,相互競爭和依存的現象;描述葯物濃度在人體內的變化規律以分析葯物的療效。

預報 一般是根據對象的固有特性預測當時間或環境變化時對象的發展規律。人口預報、天氣預報以及傳染病蔓延高潮時刻的預報可以作為這方面的例子。

決策 其含義很廣,譬如根據對象滿足的規律作出使某個數量指標達到最優的決策。使經濟效益最大的價格策略,使總費用最少的設備維修方案都是這類決策。

控制 一般是指根據對象的特徵和某些指標給出盡可能滿意的控制方案。例如化工生產過程中溫度和流量的控制,利用紅綠燈對交流進行控制等

數學建模(mathematical modelling)

數學建模是構造刻劃客觀事物原型的數學模型並用析究和解決實際問題的種方法。運用這種科學方法,建模者必須從實際問題出發,遵循「實踐――認識――實踐」的辨證唯物主義認識規律,緊緊圍繞著建模的目的,運用觀察力、想像力和邏輯思維,對問題進行抽象、簡化,反復探索、逐步完善,直到構造出一個能夠用於分析、研究和解決實際問題的數學模型。因此,數學建模不僅僅是一種定量解決實際問題的科學方法,而且還是一種從無到有的創新活動過程。當代計算機的發展和廣泛應用,使得數學模型的方法如虎添翼,加速了數學向各個學科的滲透,產生了眾多的邊緣學科。當今幾乎所有重要的學科,只要在其名稱前面或後面加上「數學」或「計算」二字,就成了現有的一種國際學術雜志名稱。這表明各學科正在利用數學方法和數學成果來加速本學科的發展。就連計算機本身的產生和進步也是強烈地依賴於數學科學的發展,而計算機軟體技術說到底也是數學技術。

引用絕對嚇人的文字

⑤ 常見的建立數學模型的方法有哪幾種各有什麼特點

—般說來建立數學模型的方法大體上可分為兩大類、一類是機理分析方法,一類是測試分析方法.機理分析是根據對現實對象特性的認識、分析其因果關系,找出反映內部機理的規律,建立的模型常有明確的物理或現實意義.

模型准備 首先要了解問題的實際背景,明確建模的目的搜集建模必需的各種信息如現象、數據等,盡量弄清對象的特徵,由此初步確定用哪一類模型,總之是做好建模的准備工作.情況明才能方法對,這一步一定不能忽視,碰到問題要虛心向從事實際工作的同志請教,盡量掌握第一手資料.

模型假設 根據對象的特徵和建模的目的,對問題進行必要的、合理的簡化,用精確的語言做出假設,可以說是建模的關鍵一步.一般地說,一個實際問題不經過簡化假設就很難翻譯成數學問題,即使可能,也很難求解.不同的簡化假設會得到不同的模型.假設作得不合理或過份簡單,會導致模型失敗或部分失敗,於是應該修改和補充假設;假設作得過分詳細,試圖把復雜對象的各方面因素都考慮進去,可能使你很難甚至無法繼續下一步的工作.通常,作假設的依據,一是出於對問題內在規律的認識,二是來自對數據或現象的分析,也可以是二者的綜合.作假設時既要運用與問題相關的物理、化學、生物、經濟等方面的知識,又要充分發揮想像力、洞察力和判斷力,善於辨別問題的主次,果斷地抓住主要因素,舍棄次要因素,盡量將問題線性化、均勻化.經驗在這里也常起重要作用.寫出假設時,語言要精確,就象做習題時寫出已知條件那樣.
模型構成 根據所作的假設分析對象的因果關系,利用對象的內在規律和適當的數學工具,構造各個量(常量和變數)之間的等式(或不等式)關系或其他數學結構.這里除需要一些相關學科的專門知識外,還常常需要較廣闊的應用數學方面的知識,以開拓思路.當然不能要求對數學學科門門精通,而是要知道這些學科能解決哪一類問題以及大體上怎樣解決.相似類比法,即根據不同對象的某些相似性,借用已知領域的數學模型,也是構造模型的一種方法.建模時還應遵循的一個原則是,盡量採用簡單的數學工具,因為你建立的模型總是希望能有更多的人了解和使用,而不是只供少數專家欣賞.

模型求解 可以採用解方程、畫圖形、證明定理、邏輯運算、數值計算等各種傳統的和近代的數學方法,特別是計算機技術.
模型分析 對模型解答進行數學上的分析,有時要根據問題的性質分析變數間的依賴關系或穩定狀況,有時是根據所得結果給出數學上的預報,有時則可能要給出數學上的最優決策或控制,不論哪種情況還常常需要進行誤差分析、模型對數據的穩定性或靈敏性分析等.
模型檢驗 把數學上分析的結果翻譯回到實際問題,並用實際的現象、數據與之比較,檢驗模型的合理性和適用性.這一步對於建模的成敗是非常重要的,要以嚴肅認真的態度來對待.當然,有些模型如核戰爭模型就不可能要求接受實際的檢驗了.模型檢驗的結果如果不符合或者部分不符合實際,問題通常出在模型假設上,應該修改、補充假設,重新建模.有些模型要經過幾次反復,不斷完善,直到檢驗結果獲得某種程度上的滿意.
模型應用 應用的方式自然取決於問題的性質和建模的目的,這方面的內容不是本書討論的范圍。
應當指出,並不是所有建模過程都要經過這些步驟,有時各步驟之間的界限也不那麼分明.建模時不應拘泥於形式上的按部就班,本書的建模實例就採取了靈活的表述方式

⑥ 通過感測器的數據特徵來建立數學模型,應該怎樣去考慮

主要考慮模型整體布局。

數學模型的歷史可以追溯到人類開始使用數字的時代。隨著人類使用數字,就不斷地建立各種數學模型,以解決各種各樣的實際問題。對於廣大的科學技術工作者對大學生的綜合素質測評,對教師的工作業績的評定以及諸如訪友,采購等日常活動,都可以建立一個數學模型,確立一個最佳方案。建立數學模型是溝通擺在面前的實際問題與數學工具之間聯系的一座必不可少的橋梁。

⑦ 用傳遞函數作為感測器的動態模型來描述感測器的動態響應特性有哪些特點

用傳遞函數H(s)作為動態模型來描述感測器的動態響應特性具有下列特點:
(1)傳遞函數H(s)反映的是感測器系統本身的特性,只與系統結構參數ai、bi有關,而與輸
入量x(t)無關。因此,用傳遞函數H(s)可以簡單而恰當地描述感測器的輸入-輸出關系。
(2)對於傳遞函數H(s)
描述的感測器系統,只要知道X(s)、Y(s)、H(s)三者中任意兩者,
就可方便地求出第三者。只要給系統一個激勵信號x(t),便可得到系統的響應y(t),系統的
特性就可被確定,而無需了解復雜系統的具體內容。
(3)同一個傳遞函數可能表徵著兩個或多個完全不同的物理系統,說明她們具有相似的傳
遞特性。但不同的物理系統有不同的系數量綱,即通過系數ai和bi(i=0,1,2,67,n;j=0,
1,2,67,m)反映出來。
(4)對於多個環節串、並聯組成的感測器系統,如各環節的阻抗匹配適當,可忽略相互之
間的影響,則感測器的等效傳遞函數可按代數方程求解而得。
由n個環節串聯而成的感測器系統,其等效傳遞函數為:
由n個環節並聯而成的感測器系統,其等效傳遞函數為:
由此可見,對於多環節的感測器測量系統,用傳遞函數來描述其輸入-輸出關系,很容易看
清各環節對系統的影響,便於對測量系統進行改進。
(5)當感測器比較復雜或感測器基本參數未知時,可通過實驗求出傳遞函數。

⑧ 數學建模的七個步驟

數學建模(mathematical modeling)就是通過建立數學模型來解決各種實際問題的方法。數學建模沒有固定的格式和標准,也沒有明確的方法,通常有6個步驟:

明確問題
合理假設
搭建模型
求解模型
分析檢驗
模型解釋
1、明確問題

數學建模所處理的問題通常是各領域的實際問題,這些問題本身往往含糊不清,難以直接找到關鍵所在,不能明確提出該用什麼方法。因此建立模型的首要任務是辨明問題,分析相關條件和問題,一開始盡可能使問題簡單,然後再根據目的和要求逐步完善。

2、合理假設

作出合理假設,是建模的一個關鍵步驟。一個實際問題不經簡化、假設,很難直接翻譯成數學問題,即使可能也會因其過於復雜而難以求解。因此,根據對象的特徵和建模的目的,需要對問題進行必要合理地簡化。

合理假設的作用除了簡化問題,還對模型的使用范圍加以限定。

作假設的依據通常是出於對問題內在規律的認識,或來自對數據或現象的分析,也可以是兩者的綜合。作假設時,既要運用與問題相關的物理、化學、生物、經濟、機械等專業方面的知識,也要充分發揮想像力、洞察力和判斷力,辨別問題的主次,盡量使問題簡化。

為保證所作假設的合理性,在有數據的情況下應對所作的假設及假設的推論進行檢驗,同時注意存在的隱含假設。

3、搭建模型

搭建模型就是根據實際問題的基本原理或規律,建立變數之間的關系。

要描述一個變數隨另一個變數的變化而變化,最簡單的方法是作圖,或者畫表格,還可以用數學表達式。在建模中,通常要把一種形式轉換成另一種形式。將數學表達式轉換成圖形和表格較容易,反過來則比較困難。

用一些簡單典型函數的組合可以組成各種函數形式。使用函數解決具體的實際問題,還比須給出各參數的值,尋求這些參數的現實解釋,往往可以抓住問題的一些本質特徵。

4、求解模型

對模型的求解往往涉及不同學科的專業知識。現代計算機科學的發展提供了強有力的輔助工具,出現了很多可進行工程數值計算和數學推導的軟體包和模擬工具,熟練掌握數學建模的模擬工具可大大增強建模能力。

不同數學模型的求解難易不同,一般情況下很多實際問題不能求出解析解,因此需要藉助計算機用數值的方法來求解,在編寫代碼之前要明確演算法和計算步驟,弄清初始值、步長等因素對結果的影響。

5、分析檢驗

在求出模型的解後,必須對模型和「解」進行分析,模型和解的適用范圍如何,模型的穩定性和可靠性如何,是否到達建模目的,是否解決了問題?

數學模型相對於客觀實際不可避免地會帶來一定誤差,一方面要根據建模的目的確定誤差的允許范圍,另一方面要分析誤差來源,想辦法減小誤差。

一般誤差有以下幾個來源,需要小心分析檢驗:

模型假設的誤差:一般來說模型難以完全反映客觀實際,因此需要做不同的假設,在對模型進行分析時,需要對這些假設小心檢驗,分析比較不同假設對結果的影響。
求近似解方法的誤差:一般來說很難得到模型的解析解,在採用數值方法求解時,數值計算方法本身也會有誤差。這類誤差許多是可以控制的。
計算工具的舍入誤差:在用計算器或計算機進行數值計算時,都不可避免由於機器字長有限而產生舍入誤差,如果進行了大量運算,這些誤差的積累是不可忽視的。
數據的測量誤差:在用感測器、調查問卷等方法獲得數據時,應注意數據本身的誤差。
6、模型解釋

數學建模的最後階段是用現實世界的語言對模型進行翻譯,這對使用模型的人深入了解模型的結果是十分重要的。模型和解是否有實際意義,是否與實際證據相符合。這一步是使數學模型有實際價值的關鍵一步。

相關閱讀

數學模型和數學建模介紹

數學建模常用的

⑨ 常見的數學模型有哪些(常見的數學模型有哪些例子)

1、常見的數學模型有哪些?。

2、常見的數學模型有哪些例子。

3、常用的數學模型有哪些。

4、數學中有哪些模型。

1.優化模型。

2.優化模型包括四個要素:決策變數、目標函數、約束條件、求解方法。

3.微分方程模型。

4.微分方程模型一般適用於動態連續模型,當描述實際對象的某些特性隨時間或空間而演變的過程、分析它的變化規律、預測它的未來性態,研究它的控制手段時,通常要建立對象的動態模型。

5.概率統計模型。

6.概率統計模型包括預測模型、經濟計量模型和馬爾可夫鏈模型三種模型。

⑩ 對於感測器的動態數學模型,頻域模型採用什麼來表示

採用拉普拉斯變換將實數域的微分方程變成復數域來表示。
對於感測器的動態數學模型,頻域模型一般情況都是採用拉普拉斯變換將實數域的微分方程變成復數域這個方法來表示的。
感測器的動態特性在動態(快速變化)的輸入信號情況下,要求感測器不僅能精確地測量信號的幅值大小,而且能測量出信號變化的過程。這就要求感測器能迅速准確地響應和再現被測信號的變化。也就是說,感測器要有良好的動態特性。

閱讀全文

與感測器數學模型的一般描述方法有哪些相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:739
乙酸乙酯化學式怎麼算 瀏覽:1404
沈陽初中的數學是什麼版本的 瀏覽:1350
華為手機家人共享如何查看地理位置 瀏覽:1042
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:884
數學c什麼意思是什麼意思是什麼 瀏覽:1408
中考初中地理如何補 瀏覽:1299
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:701
數學奧數卡怎麼辦 瀏覽:1387
如何回答地理是什麼 瀏覽:1023
win7如何刪除電腦文件瀏覽歷史 瀏覽:1055
大學物理實驗干什麼用的到 瀏覽:1484
二年級上冊數學框框怎麼填 瀏覽:1699
西安瑞禧生物科技有限公司怎麼樣 瀏覽:969
武大的分析化學怎麼樣 瀏覽:1247
ige電化學發光偏高怎麼辦 瀏覽:1337
學而思初中英語和語文怎麼樣 瀏覽:1650
下列哪個水飛薊素化學結構 瀏覽:1423
化學理學哪些專業好 瀏覽:1486
數學中的棱的意思是什麼 瀏覽:1057