1. 小學數學教學有哪些方法
小學數學要培養學生的形象思維能力,並在此基礎上,為發展抽象思維能力打下堅實的基礎。下面我來給大家介紹小學數學教學方法,希望對大家有幫助!
1、數學模型思想方法
所謂數學模型思想是指對於現實世界的某一特定對象,從它特定的生活原型出發,充分運用觀察、實驗、操作、比較、分析綜合概括等所謂過程,得到簡化和假設,它是把生活中實際問題轉化為數學問題模型的一種思想方法。培養學生用數學的眼光認識和處理周圍事物或數學問題乃數學的最高境界,也是學生高數學素養所追求的目標。
2、整體思想方法
對數學問題的觀察和分析從宏觀和大處著手,整體把握化零為整,往往不失為一種更便捷更省時的方法。
3、比較思想方法
比較思想是數學中常見的思想方法之一,也是促進學生思維發展的手段。在教學分數應用題中,教師善於引導學生比較題中已知和未知數量變化前後的情況,可以幫助學生較快地找到解題途徑。
4、符號化思想方法
用符號化的語言(包括字母、數字、圖形和各種特定的符號)來描述數學內容,這就是符號思想。如數學中各種數量關系,量的變化及量與量之間進行推導和演算,都是用小小的字母表示數,以符號的濃縮形式表達大量的信息。如定律、公式、等。
5、類比思想方法
類比思想是指依據兩類數學對象的相似性,有可能將已知的一類數學對象的性質遷移到另一類數學對象上去的思想。如加法交換律和乘法交換律、長方形的面積公式、平行四邊形面積公式和三角形面積公式。類比思想不僅使數學知識容易理解,而且使公式的記憶變得順水推舟的自然和簡潔。
6、轉化思想方法
轉化思想是由一種形式變換成另一種形式的思想方法,而其本身的大小是不變的。如幾何的等積變換、解方程的同解變換、公式的變形等,在計算中也常用到甲÷乙=甲×1/乙。
7、分類思想方法
分類思想方法不是數學獨有的方法,數學的分類思想方法體現對數學對象的分類及其分類的標准。如自然數的分類,若按能否被2整除分奇數和偶數;按約數的個數分質數和合數。又如三角形可以按邊分,也可以按角分。不同的分類標准就會有不同的分類結果,從而產生新的概念。對數學對象的正確、合理分類取決於分類標準的正確、合理性,數學知識的分類有助於學生對知識的梳理和建構。
8、集合思想方法
集合思想就是運用集合的概念、邏輯語言、運算、圖形等來解決數學問題或非純數學問題的思想方法。小學採用直觀手段,利用圖形和實物滲透集合思想。在講述公約數和公倍數時採用了交集的思想方法。
9、數形結合思想方法
數和形是數學研究的兩個主要對象,數離不開形,形離不開數,一方面抽象的數學概念,復雜的數量關系,藉助圖形使之直觀化、形象化、簡單化。另一方面復雜的形體可以用簡單的數量關系表示。在解應用題中常常藉助線段圖的直觀幫助分析數量關系。
10、統計思想方法
小學數學中的'統計圖表是一些基本的統計方法,求平均數應用題是體現出數據處理的思想方法。
11、極限思想方法
事物是從量變到質變的,極限方法的實質正是通過量變的無限過程達到質變。在講「圓的面積和周長」時,「化圓為方」「化曲為直」的極限分割思路,在觀察有限分割的基礎上想像它們的極限狀態,這樣不僅使學生掌握公式還能從曲與直的矛盾轉化中萌發了無限逼近的極限思想。
12、代換思想方法
他是方程解法的重要原理,解題時可將某個條件用別的條件進行代換。如學校買了4張桌子和9把椅子,共用去504元,一張桌子和3把椅子的價錢正好相等,桌子和椅子的單價各是多少?
13、可逆思想方法
它是邏輯思維中的基本思想,當順向思維難於解答時,可以從條件或問題思維尋求解題思路的方法,有時可以借線段圖逆推。如一輛汽車從甲地開往乙地,第一小時行了全程的1/7,第二小時比第一小時多行了16千米,還有94千米,求甲乙之距。
14、化歸思維方法
把有可能解決的或未解決的問題,通過轉化過程,歸結為一類以便解決可較易解決的問題,以求得解決,這就是「化歸」。而數學知識聯系緊密,新知識往往是舊知識的引申和擴展。讓學生面對新知會用化歸思想方法去思考問題,對獨立獲得新知能力的提高無疑是有很大幫助。
15、變中抓不變的思想方法
在紛繁復雜的變化中如何把握數量關系,抓不變的量為突破口,往往問了就迎刃而解。如:科技書和文藝書共630本,其中科技書20%,後來又買來一些科技書,這時科技書佔30%,又買來科技書多少本?
16、對應思想方法
對應是人們對兩個集合因素之間的聯系的一種思想方法,小學數學一般是一一對應的直觀圖表,並以此孕伏函數思想。如直線上的點(數軸)與表示具體的數是一一對應。
17、假設思想方法
假設是先對題目中的已知條件或問題作出某種假設,然後按照題中的已知條件進行推算,根據數量出現的矛盾,加以適當調整,最後找到正確答案的一種思想方法。假設思想是一種有意義的想像思維,掌握之後可以使要解決的問題更形象、具體,從而豐富解題思路。
2. 小學數學課堂教學常見的教學手段有哪些
我國中小學常用的教學方法有:
1)講授法
講授法是教師通過口頭語言向學生傳授知識的方法。講授法包括講述法、講解法、講讀法和講演法。教師運用各種教學方法進行教學時,大多都伴之以講授法。這是當前我國最經常使用的一種教學方法。
2)談論法
談論法亦叫問答法。它是教師按一定的教學要求向學生提出問題,要求學生回答,並通過問答的形式來引導學生獲取或鞏固知識的方法。談論法特別有助於激發學生的思維,調動學習的積極性,培養他們獨立思考和語言表述的能力。初中,尤其是小學低年級常用談論法。
談論法可分復習談話和啟發談話兩種。復習談話是根據學生已學教材向學生提出一系列問題,通過師生問答形式以幫助學生復習、深化、系統化已學的知識。啟發談話則是通過向學生提出來思考過的問題,一步一步引導他們去深入思考和探取新知識。
3)演示法
演示教學是教師在教學時,把實物或直觀教具展示給學生看,或者作示範性的實驗,通過實際觀察獲得感性知識以說明和印證所傳授知識的方法。
演示教學能使學生獲得生動而直觀的感性知識,加深對學習對象的印象,把書本上理論知識和實際事物聯系起來,形成正確而深刻的概念;能提供一些形象的感性材料,引起學習的興趣,集中學生的注意力,有助於對所學知識的深入理解、記憶和鞏固;能使學生通過觀察和思考,進行思維活動,發展觀察力、想像力和思維能力。
4)練習法
練習法是學生在教師的指導下,依靠自覺的控制和校正,反復地完成一定動作或活動方式,藉以形成技能、技巧或行為習慣的教學方法。從生理機制上說,通過練習使學生在神經系統中形成一定的動力定型,以便順利地、成功地完成某種活動。練習在各科教學中得到廣泛的應用,尤其是工具性學科(如語文、外語、數學等)和技能性學科(如體育、音樂、美術等)。練習法對於鞏固知識,引導學生把知識應用於實際,發展學生的能力以及形成學生的道德品質等方面具有重要的作用。
5)讀書指導法
讀書指導法是教師指導學生通過閱讀教科書、參考書以獲取知識或鞏固知識的方法。學生掌握書本知識,固然有賴於教師的講授,但還必須靠他們自己去閱讀、領會,才能消化、鞏固和擴大知識。特別是只有通過學生獨立閱讀才能掌握讀書方法,提高自學能力,養成良好的讀書習慣。
6)課堂討論法
課堂討論法是在教師的指導下,針對教材中的基礎理論或主要疑難問題,在學生獨立思考之後,共同進行討論、辯論的教學組織形式及教學方法,可以全班進行,也可分大組進行。
7)實驗法
實驗法是學生在教師的指導下,使用一定的設備和材料,通過控制條件的操作過程,引起實驗對象的某些變化,從觀察這些現象的變化中獲取新知識或驗證知識的教學方法。在物理、化學、生物、地理和自然常識等學科的教學中,實驗是一種重要的方法。一般實驗是在實驗室、生物或農業實驗園地進行的。有的實驗也可以在教室里進行。實驗法是隨著近代自然科學的發展興起的。現代科學技術和實驗手段的飛躍發展,使實驗法發揮越來越大的作用。通過實驗法,可以使學生把一定的直接知識同書本知識聯系起來,以獲得比較完全的知識,又能夠培養他們的獨立探索能力、實驗操作能力和科學研究興趣。它是提高自然科學有關學科教學質量不可缺少的條件。
8)啟發法
啟發教學可以由一問一答、一講一練的形式來體現;也可以通過教師的生動講述使學生產生聯想,留下深刻印象而實現。所以說,啟發性是一種對各種教學方法和教學活動都具有的指導意義的教學思想,啟發式教學法就是貫徹啟發性教學思想的教學法。也就是說,無論什麼教學方法,只要是貫徹了啟發教學思想的,都是啟發式教學法,反之,就不是啟發式教學法。
9)實習法
實習法就是教師根據教學大綱的要求,在校內外組織學生實際的學習操作活動,將書本知識應用於實際的一種教學方法。這種方法能很好地體現理論與實際相結合的精神,對培養學生分析問題和解決問題能力,特別是實際操作本領具有重要意義。實習法,在自然科學各門學科和職業教育中佔有重要的地位。這種方法和實驗方法比較起來,雖有很多類似的地方,但它在讓學生獲得直接知識,驗證和鞏固所學的書本知識,培養學生從事實際工作的技能和技巧以及能力等方面,卻有其特殊的作用。
3. 小學數學教學中常用的教學方法有哪些
小學數學教學的有效方法:
1、 讓學生掌握基本學習方法,養成良好的學習習慣;
2、 引導學生積極參與學習,學會數學的思維方法;
3、 教給學生解決問題的方法;
4、 給學生閱讀的方法;
5、 讓學生掌握操作方法;
6、 使學生形成質疑問題、敢於提問的好習慣;
7、 教會學生整理知識脈絡,總結學習過程;
8、 教會學生進行數學交流;
4. 小學數學教學方法有哪些
1、營造良好的學習環境,使學生主動參與數學活動
現代教育家認為,要使學生積極、主動地探索求知,必須在民主、平等、友好合作的師生關系基礎上,創設愉悅和諧的學習氣氛。教師應鼓勵學生大膽地提出自己的見解,即使有時學生說得不準確、不完整,也要讓他們把話說完,保護學生的積極性。和諧愉快的學習氛圍為學生提供了充分展現自我的機會,作為教師只有善於協調好師生之間的互動關系,方可讓多數學生有機會發表自己的見解。
2、用多種教學方式,使學生把數學與生活聯系在一起
人的思維過程始於視角器官。課本上的主題圖具有情感上的吸引力,容易讓學生產生主動學習的意識,激發他們的求知慾與好奇心。因此,在小學數學教學中,教師要充分利用創設主題圖,激發學生對新知識學習的熱情,為學生學習新知識做好鋪墊,讓學生把數學與生活聯系在一起。
數學來源於生活,讓學生感受到數學就在他們的周圍。因此,從學生已有的生活經驗出發,創設生活中的情境,強化感性認識,從而達到學生對數學的理解。
5. 小學數學常用的教學方法有哪些
圖形解題法1、對應思想方法
對應是人們對兩個集合因素之間的聯系的一種思想方法,小學數學一般是一一對應的直觀圖表,並以此孕伏函數思想。如直線上的點(數軸)與表示具體的數是一一對應。
2、假設思想方法
假設是先對題目中的已知條件或問題作出某種假設,然後按照題中的已知條件進行推算,根據數量出現的矛盾,加以適當調整,最後找到正確答案的一種思想方法。假設思想是一種有意義的想像思維,掌握之後可以使要解決的問題更形象、具體,從而豐富解題思路。
3、比較思想方法
比較思想是數學中常見的思想方法之一,也是促進學生思維發展的手段。在教學分數應用題中,教師善於引導學生比較題中已知和未知數量變化前後的情況,可以幫助學生較快地找到解題途徑。
4、符號化思想方法
用符號化的語言(包括字母、數字、圖形和各種特定的符號)來描述數學內容,這就是符號思想。如數學中各種數量關系,量的變化及量與量之間進行推導和演算,都是用小小的字母表示數,以符號的濃縮形式表達大量的信息。如定律、公式、等。
5、類比思想方法
類比思想是指依據兩類數學對象的相似性,有可能將已知的一類數學對象的性質遷移到另一類數學對象上去的思想。如加法交換律和乘法交換律、長方形的面積公式、平行四邊形面積公式和三角形面積公式。類比思想不僅使數學知識容易理解,而且使公式的記憶變得順水推舟般自然和簡潔。
6、轉化思想方法
常用的方法有:假設法、圖解法、逆推法、化歸法、類比法
轉化思想是由一種形式變換成另一種形式的思想方法,而其本身的大小是不變的。如幾何的等積變換、解方程的同解變換、公式的變形等,在計算中也常用到甲÷乙=甲×1/乙。
6. 小學數學教學方法有哪些
學好數學很重要,小學數學教學方法有哪些呢?下面我來給大家介紹,希望對大家有幫助!
一、形象思維方法
形象思維方法是指人們用形象思維來認識、解決問題的方法。它的思維基礎是具體形象,並從具體形象展開來的思維過程。
形象思維的主要手段是實物、圖形、表格和典型等形象材料。它的認識特點是以個別表現一般,始終保留著對事物的直觀性。它的思維過程表現為表象、類比、聯想、想像。它的思維品質表現為對直觀材料進行積極想像,對表象進行加工、提煉進而提示出本質、規律,或求出對象。它的思維目標是解決實際問題,並且在解決問題當中提高自身的思維能力。
1、實物演示法
利用身邊的實物來演示數學題目的條件和問題,及條件與條件,條件與問題之間的關系,在此基礎上進行分析思考、尋求解決問題的方法。
這種方法可以使數學內容形象化,數量關系具體化。比如:數學中的相遇問題。通過實物演示不僅能夠解決「同時、相向而行、相遇」等術語,而且為學生指明了思維方向。再如,在一個圓形(方形)水塘周圍栽樹問題,如果能進行一個實際操作,效果要好得多。
二年級數學教材中,「三個小朋友見面握手,每兩人握一次,共要握幾次手」與「用三張不同的數字卡片擺成兩位數,共可以擺成多少個兩位數」。像這樣的有關排列、組合的知識,在小學教學中,如果實物演示的方法,是很難達到預期的教學目標的。
特別是一些數學概念,如果沒有實物演示,小學生就不能真正掌握。長方形的面積、長方體的認識、圓柱的體積等的學習,都依賴於實物演示作思維的基礎。
所以,小學數學教師應盡可能多地製作一些數學教(學)具,而且這些教(學)具用過後要好好保存,可以重復使用。這樣可以有效地提高課堂教學效率,提升學生的學習成績。
2、圖示法
藉助直觀圖形來確定思考方向,尋找思路,求得解決問題的方法。
圖示法直觀可靠,便於分析數形關系,不受邏輯推導限制,思路靈活開闊,但圖示依賴於人們對表象加工整理的可靠性上,一旦圖示與實際情況不相符,易使在此基礎上的聯想、想像出現謬誤或走入誤區,最後導致錯誤的結果。比如有的數學教師愛徒手畫數學圖形,難免造成不準確,使學生產生誤解。
在課堂教學當中,要多用圖示的方法來解決問題。有的題目,圖畫出來了,結果也就出來的;有的題,圖畫好了,題意學生也就明白了;有的題,畫圖則可以幫助分析題意、啟迪思路,作為其他解法的輔助手段。
例1。把一根木頭鋸成3段需要24分鍾,鋸成6段需要多少分鍾?(圖略)
思維方法是:圖示法。
思維方向是:鋸幾次,每次用幾分鍾。
思路是:鋸3段鋸了幾次,每次用幾分鍾,鋸6段鋸了幾次,需要多少分鍾。
例2 。判斷:等腰三角形中,點D是底邊BC的中點,圖甲的面積比圖乙的面積大,圖甲的周長比圖乙的周長長。(圖略)
思維方法:圖示法。
思維方向:先比較面積,再比較周長。
思路:作條輔助線。圖甲占的面積大,圖乙所佔面積小,所以「圖甲的面積比圖乙的面積大」是正確的。線段AD比曲線AD短,所以「圖甲的周長比圖乙的周長長」是錯誤的。
3、列表法
運用列出表格來分析思考、尋找思路、求解問題的方法叫做列表法。列表法清晰明了,便於分析比較、提示規律,也有利於記憶。它的局限性在於求解范圍小,適用題型狹窄,大多跟尋找規律或顯示規律有關。比如,正、反比例的內容,整理數據,乘法口訣,數位順序等內容的教學大都採用「列表法」。
用列表法解決傳統數學問題:雞兔同籠問題。製作三個表格:第一張表格是逐一舉例法,根據雞與兔共20隻的條件,假設雞只有1隻,那麼兔就有19隻,腿共有78條……這樣逐一列舉,直至尋找到所求的答案;第二張表格是列舉了幾個以後發現了只數與腿數的規律,從而減少了列舉的次數;第三張表格是從中間開始列舉,由於雞與兔共20隻,所以各取10隻,接著根據實際的數據情況確定列舉的方向。
4、探索法
按照一定方向,通過嘗試來摸索規律、探求解決問題思路的方法叫做探究法。我國著名數學家華羅庚說過,在數學里,「難處不在於有了公式去證明,而在於沒有公式之前,怎樣去找出公式來。」蘇霍姆林斯基說過:在人的心靈深處,都有一種根深蒂固的需要,這就是希望自己是一個發現者、研究者、探索者,而在兒童的精神世界中,這種需要特別強烈。「學習要以探究為核心」,是新課程的基本理念之一。人們在難以把問題轉化為簡單的、基本的、熟悉的、典型的問題時,常常採取的一種好方法就是探究、嘗試。
第一、探究方向要准確,興趣要高漲,切忌胡亂嘗試或形式主義的探究。例如,教學「比例尺」時,教師創設「學生出題考老師」的教學情境,師:「現在我們考試好不好?」學生一聽:很奇怪,正當學生疑惑之時,教師說:「今天改變過去的考試方法,由你們出題考老師,願意嗎?」學生聽後很感興趣。教師說:「這里有一幅地圖,你們用直尺任意量出兩地的距離,我都能很快地告訴你們這兩地之間的實際距離,相信嗎?」於是學生紛紛上台度量、報數,教師都一個接一個地回答對應的實際距離。學生這時更感到奇怪,異口同聲地說:「老師您快告訴我們吧,您是怎樣算的'?」教師說:「其實呀,有一位好朋友在暗中幫助老師,你們知道它是誰嗎?想認識它嗎?」於是引出所要學習的內容「比例尺」。
第二、定向猜測,反復實踐,在不斷分析、調整中尋找規律。
例3 。找規律填數。
(1)1、4、 、10、13、 、19;
(2)2、8、18、32、 、72、 。
第三,獨立探究與合作探究結合。獨立,有自由的思維時空;合作,可以知識上互補,方法上互相借鑒,不時還能碰撞出智慧的火花。
小學數學教學活動中,教師應盡量創設讓學生去探究的情景,創造讓學生去探究的機會,鼓勵有探究精神和習慣的學生。
5、觀察法
通過大量具體事例,歸納發現事物的一般規律的方法叫做觀察法。巴浦洛夫說:"應當先學會觀察,不學會觀察永遠當不了科學家。」
小學數學「觀察」的內容一般有:①數字的變化規律及位置特點;②條件與結論之間的關系;③題目的結構特點;④圖形的特點及大小、位置關系。
如:觀察一組算式:25×4=4×25,62×11=11×62,100×6=6×100……歸納出乘法交換率:在乘法算式里,交換兩個因數的位置,積不變。
「觀察」的要求:
第一、觀察要細致、准確。
例4 。找出下列各題錯在哪裡,並改正。
(1)25×16=25×(4×4)=(25×4)×(25×4);
(2)18×36+18×64=(18+18)×(36+64)
例5 。直接寫出下列各題的得數:
(1)3。6+6。4 (2)3。6+6。04
(3)125×57×0。04 (4)(351—37—13)÷5
第二、科學觀察。科學觀察滲透了更多的理性因素,它是有目的,有計劃地察看研究對象。比如,在教學長方體的認識時,要做到「有序」觀察:(1)面——形狀、個數、面與面之間的關系;(2)棱——棱的形成、條數、棱與棱之間的關系(相對的棱相等;相對的棱有四條;長方體的棱可以分為三組);(3)頂點——頂點的形成、個數,認識頂點的一個重要作用是引出長方體長、寬、高的概念。
第三, 觀察必定與思考結合。
例6
這是一年級下學期的一道思考題,如果只觀察不思考,這道題目讓干什麼就不知道。
6、典型法
針對題目去聯想已經解過的典型問題的解題規律,從而找出解題思路的方法叫做典型法。典型是相對於普遍而言的。解決數學問題,有些需要用一般方法,有些則需要用特殊(典型)方法。比如,歸一、倍比和歸總演算法、行程、工程、消同求異、平均數等。
運用典型法必須注意:
(1)要掌握典型材料的關鍵及規律。
例7。已知爸爸比兒子大30歲,爸爸今年的年齡正好是兒子的7倍。爸爸、兒子今年分別是多少歲?關鍵點在:爸爸比兒子大30歲,爸爸的年齡比兒子多幾倍。典型題都有典型解法,要想真正學好數學,即要理解和掌握一般思路和解法,還要學會典型解法。
(2)熟悉典型材料,並能敏捷地聯想到所適用的典型,從而確定所需要的解題方法。
例8。見到「某城市有一條公共汽車線路,長16500米,平均每隔500米設一個車站。這條線路需要設多少個車站?」這樣題目,就應該聯想到上面所講到的「鋸木頭用多少分鍾」的典型問題。
(3)典型和技巧相聯系。
例9。甲乙兩個工程隊共有82人,如果從乙隊調8人到甲隊,兩隊人數正好相等。甲乙兩隊原來各有多少人?這題目的技巧:調前、調後兩隊總人數沒變。先算調後各隊人數,再算原來各隊人數。
7、放縮法
通過對被研究對象的放縮估計來解決問題的方法叫做放縮法。放縮法靈活、巧妙,但有賴於知識的拓展能力及其想像能力。
例16。求12和9的最小公倍數。
求兩個數的最小公倍數一般的方法是「短除式」方法,它是根據這兩個數的質因數情況來求出它們的最小公倍數的。但也有兩個典型方法:一是「如果兩個數是互質數,那麼這兩個數的最小公倍數就是它們的乘積」;二是「如果大數是小數的倍數,那麼這兩個數的最小公倍數就是大數」。現在我們根據典型方法二,進行擴展運用,放大「大數」來求12和9的最小公倍數。
12不是9的倍數,就把它放大2倍,得24,仍然不是9的倍數,放大3倍,得36,36是9的倍數,那麼,12和9的最小公倍數就是36。這種方法的關鍵點在於,如果大數不是小數的倍數,就把大數翻倍,但一定從2倍開始,如果一下子擴大6倍,得數是它們的公倍數,而不是最小的了。
例17。期末考試,小剛的語文成績和英語成績的和是197分;語文和數學成績加起來是199分;數學和英語成績加起來是196分。想一想,小剛的哪科成績最高?你能算出小剛的各科成績嗎?
思路一:「放大」。通過觀察發現,語、數、外三科成績在題目中各出現兩次,我們求197+199+196的和,這個和是「語數外成績的2倍」,除以2得三科成績之和,再減去任意兩科的成績,就得到第三科的成績。
思路二:「縮小」。我們用語數成績的和減去語外的成績,199—197=2(分),這是數學減英語成績的差。數學和英語的和是196分,再求數學的分數就不難了。
放縮法有時運用在估算和驗算上。
例18 。檢驗下列計算結果是否正確?
(1)18。7×6。9=137。3; (2)17485÷6。6=3609。
對於(1)用總體估計,放大至19×7=133,估計得數要小於133,所以本題結果錯誤。對於(2)用最高位估計,把17看作18,把6。6看作6,18÷6=3,顯然答數的最高位不會是3,故本題結果也不正確。
例19。把雞和兔放在一起,共有48個頭,114隻足,問雞、兔各有幾只。
這是一道雞兔同籠的典型問題,我們也用放縮法,不妨把雞和兔的足數縮小2倍,那麼,雞的足數和它的頭數一樣,而兔的足數是它的只數的2倍。所以,總的足數縮小2倍後,雞和兔的總足數與它們的總只數相差數就是兔的只數。
8、驗證法
你的結果正確嗎?不能只等教師的評判,重要的是自己心裡要清楚,對自己的學習有一個清楚的評價,這是優秀學生必備的學習品質。
驗證法應用范圍比較廣泛,是需要熟練掌握的一項基本功。應當通過實踐訓練及其長期體驗積累,不斷提高自己的驗證能力和逐步養成嚴謹細致的好習慣。
(1)用不同的方法驗證。教科書上一再提出:減法用加法檢驗,加法用減法檢驗,除法用乘法驗算,乘法用除法驗算。
(2)代入檢驗。解方程的結果正確嗎?用代入法,看等號兩邊是否相等。還可以把結果當條件進行逆向推算。
(3)是否符合實際。「千教萬教教人求真,千學萬學學做真人」陶行知先生的話要落實在教學中。比如,做一套衣服需要4米布,現有布31米,可以做多少套衣服?有學生這樣做:31÷4≈8(套)
按照「四捨五入法」保留近似數無疑是正確的,但和實際不符合,做衣服的剩餘布料只能捨去。教學中,常識性的東西予以重視。做衣服套數的近似計算要用「去尾法」。
(4)驗證的動力在猜想和質疑。牛頓曾說過:「沒有大膽的猜想,就做不出偉大的發現。」「猜」也是解決問題的一種重要策略。可以開拓學生的思維、激發「我要學」的願望。為了避免瞎猜,一定 學會驗證。驗證猜測結果是否正確,是否符合要求。如不符合要求,及時調整猜想,直到解決問題。
二、抽象思維方法
運用概念、判斷、推理來反映現實的思維過程,叫抽象思維,也叫邏輯思維。
抽象思維又分為:形式思維和辯證思維。客觀現實有其相對穩定的一面,我們就可以採用形式思維的方式;客觀存在也有其不斷發展變化的一面,我們可以採用辯證思維的方式。形式思維是辯證思維的基礎。
形式思維能力:分析、綜合、比較、抽象、概括、判斷、推理。
辯證思維能力:聯系、發展變化、對立統一律、質量互變律、否定之否定律。
小學數學要培養學生初步的抽象思維能力,重點突出在:(1)思維品質上,應該具備思維的敏捷性、靈活性、聯系性和創造性。(2)思維方法上,應該學會有條有理,有根有據地思考。(3)思維要求上,思路清晰,因果分明,言必有據,推理嚴密。(4)思維訓練上,應該要求:正確地運用概念,恰當地下判斷,合乎邏輯地推理。
9、對照法
如何正確地理解和運用數學概念?小學數學常用的方法就是對照法。根據數學題意,對照概念、性質、定律、法則、公式、名詞、術語的含義和實質,依靠對數學知識的理解、記憶、辨識、再現、遷移來解題的方法叫做對照法。
這個方法的思維意義就在於,訓練學生對數學知識的正確理解、牢固記憶、准確辨識。
例20。個連續自然數的和是18,則這三個自然數從小到大分別是多少?
對照自然數的概念和連續自然數的性質可以知道:三個連續自然數和的平均數就是這三個連續自然數的中間那個數。
例21。判斷:能被2除盡的數一定是偶數。
這里要對照「除盡」和「偶數」這兩個數學概念。只有這兩個概念全理解了,才能做出正確判斷。
10、公式法
運用定律、公式、規則、法則來解決問題的方法。它體現的是由一般到特殊的演繹思維。公式法簡便、有效,也是小學生學習數學必須學會和掌握的一種方法。但一定要讓學生對公式、定律、規則、法則有一個正確而深刻的理解,並能准確運用。
例22。計算59×37+12×59+59
59×37+12×59+59
=59×(37+12+1) …………運用乘法分配律
=59×50 …………運用加法計演算法則
=(60—1) ×50 …………運用數的組成規則
=60×50—1×50 …………運用乘法分配律
=3000—50 …………運用乘法計演算法則
=2950 …………運用減法計演算法則
11。比較法
通過對比數學條件及問題的異同點,研究產生異同點的原因,從而發現解決問題的方法,叫比較法。
比較法要注意:
(1)找相同點必找相異點,找相異點必找相同點,不可或缺,也就是說,比較要完整。
(2)找聯系與區別,這是比較的實質。
(3)必須在同一種關系下(同一種標准)進行比較,這是「比較」的基本條件。
(4)要抓住主要內容進行比較,盡量少用「窮舉法」進行比較,那樣會使重點不突出。
(5)因為數學的嚴密性,決定了比較必須要精細,往往一個字,一個符號就決定了比較結論的對或錯。
例23。填空:0。75的最高位是( ),這個數小數部分的最高位是( );十分位的數4與十位上的數4相比,它們的( )
相同,( )不同,前者比後者小了( )。
這道題的意圖就是要對「一個數的最高位和小數部分的最高位的區別」,還有「數位和數值」的區別等。
例24。六年級同學種一批樹,如果每人種5棵,則剩下75棵樹沒有種;如果每人種7棵,則缺少15棵樹苗。六年級有多少學生?
這是兩種方案的比較。相同點是:六年級人數不變;相異點是:兩種方案中的條件不一樣。
找聯系:每人種樹棵數變化了,種樹的總棵數也發生了變化。
找解決思路(方法):每人多種7—5=2(棵),那麼,全班就多種了75+15=90(棵),全班人數為90÷2=45(人)。
12、分類法
俗語:物以類聚,人以群分。
根據事物的共同點和差異點將事物區分為不同種類的方法,叫做分類法。分類是以比較為基礎的。依據事物之間的共同點將它們合為較大的類,又依據差異點將較大的類再分為較小的類。
分類即要注意大類與小類之間的不同層次,又要做到大類之中的各小類不重復、不遺漏、不交叉。
例25。自然數按約數的個數來分,可分成幾類?
答:可分為三類。(1)只有一個約數的數,它是一個單位數,只有一個數1;(2)有兩個約數的,也叫質數,有無數個;(3)有三個約數的,也叫合數,也有無數個。
7. 小學數學教學中幾種常用的教學方法
小學數學是小學必修課程,但是數學這一科不同於其他課目,是比較枯燥和乏味的。而且學生年齡比較小,在上課的時候容易被課堂外的事物吸引。所以這就需要老師在課堂上採用靈活的手段,讓同學們的注意力集中在課堂上。那麼下面,由我給大家介紹小學數學中幾種常用的教學方法。
1.小學數學中常用的教學方法
通過演示進行識字教學
1. 圖文演示法。
最早的漢字是象形字。低年級學生的認知特徵是以形象思維為主的,因此如果讓他們自己去創造具體、直觀,又是自己熟悉的形象來幫助識字,效果會更好。例如在教「山」字時就利用畫圖畫的方法讓學生識記山字。首先讓學生讀一讀,讀准字音,再讓學生聯系生活實際,想一想平時看到的山是什麼樣子的,接著讓學生畫一畫,再接著讓學生與山字比一比,最後讓學生寫一寫,把「山」字寫一遍。這種形象直觀寓教於樂的形式非常符合學生的年齡特徵,他們很快接受了生字,此後在學習象形字後,一般都採用這種教學方式,慢慢地學生也掌握了這種方法,也培養了學生識字的能力。
2. 動作演示法。
低年級學生特別好動,根據他的這個特點,在教學「揉」、「扭」、「鑽」時讓學生做一做「揉一揉」、「扭動」、「向上鑽」的動作,讓他更深入地理解字義,更好地記字。
創設情境進行識字教學
在識字教學中,通過簡筆畫、動作、語言等,創設情景,使漢字與事物形象地聯系起來,能有效地提高識字效率。如教「哭」字時,學生比較容易寫漏一點,老師可以出示一幅小妹妹哭的圖畫,再讓學生用簡筆畫畫出她哭的樣子,老師指出「哭」上兩個口表示眼睛,一點是哭的眼淚。這樣,學生寫「哭」字時,就會想到這滴眼淚,就不會漏寫這一點了。又如教「跑」、「跳」、「推」等字時,可讓學生做做這些動作,體會這些字的部首與意思的關系,從而記住這些字的字形。
2.小學數學教學的思維方法
抽象與概括的方法
抽象就是從許多客觀事物中舍棄個別的、非本質的屬性,抽出共同的、本質的屬性 的思維方法,概括就是把同類事物的共同本質屬性綜合起來成為一個整體。例如,10以內加法題一共有45道,學生初學時都是靠記住數的組成進行計算的。
但是如果教師幫助學生逐步抽象概括出如下的規律,學生的計算就靈活多了:①一個數加上1,其結果就是這個數的後繼數。②應用加法的交換性質。 ③一個數加上2,共13道題,可運用規律①推得。④5+5=10。掌握了這些規律,學生就可以減輕記憶負擔,其認識水平也可以大大提 高。又如,在計算得數是11的加法時,學生通過擺小棒計算出2+9、3+8、7+4、6+5等幾道題之後,從中抽象出「湊十法」:看大數,拆小數,先湊十,再加幾。這樣,在學習後面的所有20以內進位加法時就可以直接運用「湊十法」進行計算了。事實表明,學生一旦掌握了抽象與概括的學習方法,機械記憶就將被意義理解所代替,認知能力和思維能力就會產生新的飛躍。
分析與綜合的方法
所謂分析的方法,就是把研究的對象分解成它的各個組成部分,然後分別研究每一個組成部分,從而獲得對研究對象的本質認識的思維方法。綜合的方法是把認識對象的各個部分聯系起來加以研究,從整體上認識它的本質。例如學生認識5, 教師要求學生把5個蘋果放在兩個盤子里,從而得到四種分法 :1和4;2和3;3和2;4和1。
由此學生認識到5可以分成1和4,也可以分成2和3等。 這就是分析法。反過來, 教師又引導學生在分析的基礎上認識:1和4可以組成5,2和3也可以組成5。這就是綜合法。在此基礎上, 教師 還可以再一次運用分析、綜合方法,指導學生認識5還可以分成5個1,從而知道5裡面有5個1;反過來,5個1能 組成5。分析、綜合法廣泛應用於整數的認識、分數、小數、四則混合運算、復合應用題、組合圖形的計算等教學中。
3.小學數學課堂有效教學方法
鼓勵學生進行猜想
猜想就是運用現有知識對未知知識進行的一種推斷,猜想對於新知識的學習有很大意義。因此,教師在教學過程中要多鼓勵學生進行猜想。首先,要創造條件讓學生猜想,在講解新知識之前,教師根據所學基礎創造一些與此相矛盾的情況讓學生在猜想中對新知識有一定的認識;
其次,教師要合理引導學生猜想,鼓勵學生多進行課外知識的補充,激起他們猜想的慾望,讓他們利用生活和學習經驗合理進行猜想;最後,對於學生的猜想教師要善於幫助他們進行驗證,學生在猜想的過程中積極大膽地發揮了自己的想像和創意,只有驗證這種猜想才能讓學生感受到成功的快樂,從而更積極地進行猜想。
善於留懸念
在課堂上,教師要善於適時適地地設置懸念,以懸念來激發學生對答案的追求,對新知識的學習。可以在講解的過程中設疑,如,在教授「年、月、日」的知識時,教師可以先向學生提問:某同學今年已經12歲了,但是他真正的生日只過了3個,你們知道這是為什麼嗎?學生在這種情況下一般都比較好奇,就會競相猜測,這時候,懸念已經在心理上產生了,老師如果再說一句「學完今天的課程你就會知道」,就能極大地調動學生的學習積極性。
除此之外,還可以將實際生活聯系教材知識設疑,如,在進行「圓的知識」的學習時,可以告訴學生我們平常乘坐的交通工具的輪子都是圓形的,那麼,為什麼不設成三角形或正方形的呢?以此來吸引學生進行新知識的學習。
4.小學數學教學方法與策略
充分地貼近學生實際生活
在平時的教學活動中,我們發現學生在解決書面問題時比較流利,但在解決生活中的一些實際問題時,就束手無策了。這到底是什麼原因呢?其實只要我們深入思考就會發現造成這種現象的主要責任者是我們教師,是我們教師在教學的時候過分地把知識「純粹」化,而忽略了知識與生活的關系。數學來源於生活,又運用於生活,脫離了生活的學習,將變成無源之水、無本之木。
將生活中的一些實際問題通過多媒體輔助教學展現在學生面前,能夠極大地引起學生探討知識的興趣。例如在教學《相遇問題》時,某位教師設計了這樣一個課件。1.小張和小李同時從甲乙兩地相向而行,未相遇。2.小張和小李同時從甲乙兩地相向而行,相遇。3.小張和小李同時從甲乙兩地相向而行,擦肩而過。4.小張和小李同時從甲乙兩地相向而行,小張先行一段路程後,小李才出發,又經過一段時間兩人相遇。5.小張和小李同時從甲乙兩地向相反的方向前進。6.小張和小李同時從同一地點向相反的方向前進。在教學中,通過多媒體課件,利用動畫,在課堂上只用了短短的幾分鍾時間,就將現實生活中能碰到相遇問題的具體情況展現在學生面前,使學生理解並掌握了「同時」、「兩地」、「相向」、「相遇」等數學概念。這樣的教學,讓數學知識貼近生活,使抽象的知識變得具體、生動、形象,大大地激發了學生的學習興趣和求知慾,調動了學生的學習積極性。
合理地設置課後作業
一個學習較差的孩子在一次作業中把一道較難的題目作對了,我在他的作業本上畫上一張笑臉,還在課堂上對他進行了表揚,同時,加上了一句:「老師期盼著你的成功,你做得真棒繼續努力」。在設置作業時,我將繁雜的教學知識融入到學生喜歡的游戲中,這樣完成的質量好學生的興趣高。同時,在評價作業時也應時常鼓勵學生,也許正是作業本中的一句贊揚的話激發了學生的學習興趣,鼓起了孩子們學習的風帆。
例如:在教學「除法」時,我給同學們設置了一個這樣的作業題:「請你回家平均將桔子分給你的家人」,自己設置題目,自己解答,結果在第二天的課上,學生們都把自己的小手舉得高高的,等待著回答,這充分說明作業的設置直接關繫到學生學的情況。就這樣,這位孩子在我的表揚和鼓勵中,學習認真刻苦從而取得了不錯的成績。
8. 小學數學教學方法有哪些
(一)講授法講授法是教師運用口頭語言系統地向學生傳授知識的方法。講授法是一種最古老的教學方法,也是迄今為止在世界范圍內應用最廣泛、最普遍的一種教學方法。 又可以分為講述、講讀、講解三種方式。
講述:教師向學生敘述、描繪事物和現象。
講解:教師向學生解釋、說明、論證概念、原理、公式等。
講讀:教師利用教科書邊讀邊講。
以上三種方式之間沒有嚴格的界限,在教學活動中經常穿插結合地使用。
講授法的優點在於,可以使學生在比較短的時間內獲得大量的、系統的知識,有利於發揮教師的主導作用,有利於教學活動有目的有計劃地進行。講授法的缺點在於,容易束縛學生,不利於學生主動、自覺地學習,而且對教師個人的語言素養依賴較大。
(二)談話法
談話法是教師根據學生已有的知識經驗,藉助啟發性問題,通過口頭問答的方式,引導學生通過比較、分析、判斷等思維活動獲取知識的教學方法。談話法的基本形式是學生在教師引導下通過獨立思考進行學習。
談話法的優點在於,能夠比較充分地激發學生的主動思維,促進學生的獨立思考,對於學生智力的發展有積極作用,同時也有助於學生語言表達能力的鍛煉和提高。談話法的缺點在於,與講授法相比,完成同樣的教學任務,它需要較多的時間。此外,當學生人數較多時,很難照顧到每一個學生。因此,談話法經常與講授法等其他方法配合使用。
(-三)討論法
討論法是在教師指導下,學生圍繞某個問題發表和交換意見,通過相互之間的啟發、討論、商量獲取知識的教學方法。討論法的基本形式是學生在教師的引導下藉助獨立思考和交流學習。
討論法的優點在於,年齡和發展水平相近的學生共同討論,容易激發興趣、活躍思維,有助於他們聽取、比較、思考不同意見,在此基礎上進行獨立思考,促進思維能力的發展。此外,討論法能夠普遍而充分地給予每一個學生表達自己觀點和意見的機會,調動所有學生的學習積極性,並且有效地促進學生口頭語言能力的發展。討論法的缺點在於,受到學生知識經驗水平和能力發展的限制,容易出現討論流於形式或者脫離主題的情況,對小學生而言更是如此,這需要教師加以注意。
(四)練習法
練習法是學生在教師指導下,進行各種練習,從而鞏固知識、形成技能技巧的教學方法。練習法的基本形式是學生在教師指導下的一種實踐性學習。
練習法的優點在於,可以有效地發展學生的各種技能技巧。任何技能技巧都是通過練習形成、鞏固和提高的,在教師指導下進行各種及時、集中的練習,能夠在這方面取得比較迅速的效果。
(五 ) 演示法
演示法是教師把實物或實物的模象展示給學生觀察,或通過示範性的實驗,通過現代教學手段,使學生獲得知識更新的一種教學方法。它是輔助的教學方法,經常與講授、談話、討論等方法配合一起使用。
(六) 讀書指導法
讀書指導法是教師 目的、有計劃地指導學生通過獨立閱讀教材和參考資料獲得知識的一種教學方法。