Ⅰ 初中函數解題技巧
初中數學不難學,但是要掌握一定的方法,下面9個方法貫穿了整個初中乃至高中數學,同學們務必要掌握哦!
1配方法
通過把一個解析式利用恆等變形的方法,把其中的某些項配成一個或幾個多項式正整數次冪的和形式解決數學問題的方法,叫配方法。
配方法用的最多的是配成完全平方式,它是數學中一種重要的恆等變形的方法,它的應用十分非常廣泛,在因式分解、化簡根式、解方程、證明等式和不等式、求函數的極值和解析式等方面都經常用到它。
2因式分解法
因式分解,就是把一個多項式化成幾個整式乘積的形式,是恆等變形的基礎,它作為數學的一個有力工具、一種數學方法在代數、幾何、三角等的解題中起著重要的作用。
因式分解的方法有許多,除中學課本上介紹的提取公因式法、公式法、分組分解法、十字相乘法等外,還有如利用拆項添項、求根分解、換元、待定系數等等。
3換元法
換元法是數學中一個非常重要而且應用十分廣泛的解題方法。
通常把未知數或變數稱為元,所謂換元法,就是在一個比較復雜的數學式子中,用新的變元去代替原式的一個部分或改造原來的式子,使它簡化,使問題易於解決。
4判別式法與韋達定理
一元二次方程ax2bxc=0(a、b、c屬於R,a≠0)根的判別,△=b2-4ac,不僅用來判定根的性質,而且作為一種解題方法,在代數式變形,解方程(組),解不等式,研究函數乃至幾何、三角運算中都有非常廣泛的應用。
韋達定理除了已知一元二次方程的一個根,求另一根;已知兩個數的和與積,求這兩個數等簡單應用外,還可以求根的對稱函數,計論二次方程根的符號,解對稱方程組,以及解一些有關二次曲線的問題等,都有非常廣泛的應用。
5待定系數法
在解數學問題時,若先判斷所求的結果具有某種確定的形式,其中含有某些待定的系數,而後根據題設條件列出關於待定系數的等式,
最後解出這些待定系數的值或找到這些待定系數間的某種關系,從而解答數學問題,這種解題方法稱為待定系數法。它是中學數學中常用的方法之一。
6構造法
在解題時,我們常常會採用這樣的方法,通過對條件和結論的分析,構造輔助元素,它可以是一個圖形、一個方程(組)、一個等式、一個函數、一個等價命題等,架起一座連接條件和結論的橋梁,
從而使問題得以解決,這種解題的數學方法,我們稱為構造法。運用構造法解題,可以使代數、三角、幾何等各種數學知識互相滲透,有利於問題的解決。
7面積法
平面幾何中講的面積公式以及由面積公式推出的與面積計算有關的性質定理,不僅可用於計算面積,而且用它來證明平面幾何題有時會收到事半功倍的效果。
運用面積關系來證明或計算平面幾何題的方法,稱為面積方法,它是幾何中的一種常用方法。
用歸納法或分析法證明平面幾何題,其困難在添置輔助線。面積法的特點是把已知和未知各量用面積公式聯系起來,通過運算達到求證的結果。
所以用面積法來解幾何題,幾何元素之間關系變成數量之間的關系,只需要計算,有時可以不添置補助線,即使需要添置輔助線,也很容易考慮到。
8幾何變換法
在數學問題的研究中,常常運用變換法,把復雜性問題轉化為簡單性的問題而得到解決。所謂變換是一個集合的任一元素到同一集合的元素的一個一一映射。
中學數學中所涉及的變換主要是初等變換。有一些看來很難甚至於無法下手的習題,可以藉助幾何變換法,化繁為簡,化難為易。
另一方面,也可將變換的觀點滲透到中學數學教學中。將圖形從相等靜止條件下的研究和運動中的研究結合起來,有利於對圖形本質的認識。
幾何變換包括:(1)平移;(2)旋轉;(3)對稱。
9反證法
反證法是一種間接證法,它是先提出一個與命題的結論相反的假設,然後,從這個假設出發,經過正確的推理,導致矛盾,從而否定相反的假設,達到肯定原命題正確的一種方法。
反證法可以分為歸謬反證法(結論的反面只有一種)與窮舉反證法(結論的反面不只一種)。用反證法證明一個命題的步驟,大體上分為:(1)反設;(2)歸謬;(3)結論。
反設是反證法的基礎,為了正確地作出反設,掌握一些常用的互為否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行於/不平行於;垂直於/不垂直於;等於/不等於;大(小)於/不大(小)於;都是/不都是;至少有一個/一個也沒有;至少有n個/至多有(n一1)個;至多有一個/至少有兩個;唯一/至少有兩個。
歸謬是反證法的關鍵,導出矛盾的過程沒有固定的模式,但必須從反設出發,否則推導將成為無源之水,無本之木。推理必須嚴謹。
Ⅱ 初中數學公式
1常用的計算公式有:乘法與因式分解、冪的運算公式、二次根式、規律數列和公式。
2一元二次方程公式:方程式是:ax2+bx+c=0,b2-4ac叫做根的判別式,當大於0有兩個根,等於0有兩個相等實根,而小於0,方程沒有實數根。
3函數公式:一次函數公式y=kx+b,它的圖像是一條直線;反比例函數公式y=k/x,它的圖像是雙曲線。
4二次函數公式:y=ax²+bx+c;(a,b,c是常數,a≠0),它的圖像是拋物線。y叫做x的二次函數,拋物線的三要素:開口方向、對稱軸、頂點
5三角函數公式:有正弦、餘弦、正切、餘切、正割和餘割,通過這個可以求三角形的邊長和角的度數。
6統計初步要掌握好4個公式:平均數、極差、方差、標准差。
頻率=頻數/總數,7面積公式:常用的面積公式有三角形面積、長方形面積、菱形面積、正方形面積、梯形面積、圓形面積、扇形面積等。
Ⅲ 初中數學函數公式大全
一次函數;y=kx+b (k不等於零 且kb為任何實數)正比例函數;y=kx(k不等於0 且k為任何實數)反比例函數;y=k/x (x不等於0且k為任何實數且不等零) 二次函數 y=ax^2;+bx+c(a不等於零,a、b、c為常數) 頂點式:y=a(x-h)^2+k或y=a(x+m)^2+k 交點式(與x軸):y=a(x-x1)(x-x2)
Ⅳ 初中數學函數全部公式
函數表示方法:解析法
列表法
圖像法
正比例函數:y=kx(k為常數,k≠0)
當k>0時,圖像過一、二象限,y隨x的增大而增大
當k<0時,圖像過二、四象限,y隨x的增大而減小
一次函數:y=kx+b(k,b是常數,k≠0)
當b=0時,y=kx+b = y=kx ,所以正比例函數是一次函數的特殊形式
反比例函數:y=k/x(k是常數,k≠0)
二次函數:y=ax+bx+c(a,b,c是常數a≠0)
銳角三角函數:
正弦定義:sinA=∠A的對邊/斜邊=a/c
餘弦定義: cosA=∠A的鄰邊/斜邊=b/c
正切定義:tanA=∠A的對邊/∠A的鄰邊=a/b