A. 數學高考必考知識點總結怎麼寫
數學高考必考知識點總結寫法如下:
1、對於含參函數,奇函數沒有偶次方項,偶函數沒有奇次方項。
2、復合函數奇偶性:內偶則偶,內奇同外。
3、周期函數未必存在最小周期,如:常數函數。c.周期函數加周期函數未必是周期函數,如:y=sinxy=sin派x相加不是周期函數。
4、轉換法:當所給命題的充要條件不易判斷時,可對命題進行等價裝換,例如改用其逆否命題進行判斷。
5、當a為不同的數值時,冪函數的定義域的不同情況如下:如果a為任意實數,則函數的定義域為大於0的所有實數;如果a為負數,則x肯定不能為0。
B. 初三數學知識點總結歸納
只有學習精彩,生命才精彩,只有學習成功,事業才成功。每一門科目都有自己的 學習 方法 ,數學作為最燒腦的科目之一,需要不斷的練習。下面是我給大家整理的一些初三數學的知識點,希望對大家有所幫助。
目錄
初三新學期數學知識點
初三數學上冊知識點歸納
初三數學復習五大方法
初三新學期數學知識點一、圓的定義
1、以定點為圓心,定長為半徑的點組成的圖形。
2、在同一平面內,到一個定點的距離都相等的點組成的圖形。
二、圓的各元素
1、半徑:圓上一點與圓心的連線段。
2、直徑:連接圓上兩點有經過圓心的線段。
3、弦:連接圓上兩點線段(直徑也是弦)。
4、弧:圓上兩點之間的曲線部分。半圓周也是弧。
(1)劣弧:小於半圓周的弧。
(2)優弧:大於半圓周的弧。
5、圓心角:以圓心為頂點,半徑為角的邊。
6、圓周角:頂點在圓周上,圓周角的兩邊是弦。
7、弦心距:圓心到弦的垂線段的長。
三、圓的基本性質
1、圓的對稱性
(1)圓是圖形,它的對稱軸是直徑所在的直線。
(2)圓是中心對稱圖形,它的對稱中心是圓心。
(3)圓是對稱圖形。
2、垂徑定理。
(1)垂直於弦的直徑平分這條弦,且平分這條弦所對的兩條弧。
(2)推論:
平分弦(非直徑)的直徑,垂直於弦且平分弦所對的兩條弧。
平分弧的直徑,垂直平分弧所對的弦。
3、圓心角的度數等於它所對弧的度數。圓周角的度數等於它所對弧度數的一半。
(1)同弧所對的圓周角相等。
(2)直徑所對的圓周角是直角;圓周角為直角,它所對的弦是直徑。
4、在同圓或等圓中,兩條弦、兩條弧、兩個圓周角、兩個圓心角、兩條弦心距五對量中只要有一對量相等,其餘四對量也分別相等。
5、夾在平行線間的兩條弧相等。
6、設⊙O的半徑為r,OP=d。
1.數的分類及概念數系表:
說明:分類的原則:1)相稱(不重、不漏)2)有標准
2.非負數:正實數與零的統稱。(表為:x0)
性質:若干個非負數的和為0,則每個非負數均為0。
3.倒數:
①定義及表示法
②性質:A.a1/a(a1);B.1/a中,aC.0
4.相反數:
①定義及表示法
②性質:A.a0時,aB.a與-a在數軸上的位置;C.和為0,商為-1。
5.數軸:
①定義(三要素)
②作用:A.直觀地比較實數的大小;B.明確體現絕對值意義;C.建立點與實數的一一對應關系。
6.奇數、偶數、質數、合數(正整數自然數)
定義及表示:
奇數:2n-1
偶數:2n(n為自然數)
7.絕對值:
①定義(兩種):
代數定義:
幾何定義:數a的絕對值頂的幾何意義是實數a在數軸上所對應的點到原點的距離。
②│a│0,符號││是非負數的標志;
③數a的絕對值只有一個;
④處理任何類型的題目,只要其中有││出現,其關鍵一步是去掉││符號。
一、回歸課本,夯實基礎,做好預習。
數學的基本概念、定義、公式,數學知識點之間的內在聯系,基本的數學解題思路與方法,是復習的重中之重。回歸課本,要先對知識點進行梳理,把教材上的每一個例題、習題再做一遍,確保基本概念、公式等牢固掌握,要穩扎穩打,不要盲目攀高,欲速則不達。復習課的內容多、時間緊。要提高復習效率,必須使自己的思維與老師的思維同步。而預習則是達到這一目的的重要途徑。沒有預習,聽老師講課,會感到老師講的都重要,抓不住老師講的重點;而預習了之後,再聽老師講課,就會在記憶上對老師講的內容有所取捨,把重點放在自己還未掌握的內容上,提高學習效率。
二、抓住關鍵,突出重點,不以題量論英雄
學好數學要做大量的題,但反過來做了大量的題,數學不一定好。「不要以題量論英雄」,題海戰術,有時候往往起到事倍功半的效果,因此要提高解題的效率。做題的目的在於檢查你學的知識,方法是否掌握得很好。如果你掌握得不準,甚至有偏差,那麼多做題的結果,反而鞏固了你的缺欠,在准確地把握住基本知識和方法的基礎上做一定量的練習是必要的,但是要有針對性地做題,突出重點,抓住關鍵。
復習中,所謂突出重點,主要是指突出教材中的重點知識,突出不易理解或尚未理解深透的知識,突出數學思想與解題方法。數學思想與方法是數學的精髓,是聯系數學中各類知識的紐帶。要抓住教材中的重點內容,掌握分析方法,從不同角度出發思索問題,由此探索一題多解、一題多變和一題多用之法。培養正確地把日常語言轉化為代數、幾何語言。並逐步掌握聽、說、讀、寫譯的數學語言技能。
三、提高復習興趣,克服「高原現象」
高原現象在數學復習階段表現得十分明顯。平時授新課,新鮮有趣;搞復習,要重復已學的內容,有的同學會覺得單調、枯燥無味,致使成績提高緩慢,甚至下降。針對這種情況,提醒同學們,一方面要從思想上提高對復習的認識,主動進行復習;另一方面,要以「新」提高復習的積極性。諸如制訂新的復習計劃;採用靈活的 復習方法 ;抓住新穎有趣的內容和習題,把知識串連起來,使書「由厚變薄」。
四、提高課堂聽課效率,多動腦,勤動手
初三的課只有兩種形式:復習課和評講課,到初三所有課都進入復習階段,通過復習,學生要知道自己哪些知識點掌握的比較好,哪些知識點有待提高,因此在復習課之前一定要有自已的思考,這樣聽課的目的就明確了。現在學生手中都會有一些復習資料,在老師講課之前,要把例題做一遍,做題中發現的難點,就是聽課的重點;對預習中遇到的沒有掌握好的舊知識,可進行查漏補缺,以減少聽課過程中的困難,自己理解了的東西與老師的講解進行比較、分析即可提高自己的數學思維;體會分析問題的思路和解決問題的思想方法,堅持下去,就一定能舉一反三,事半功倍。此外對於老師講課中的難點,重點要作好筆記,筆記不是記錄而是將上述聽課中的要點,思維方法等作出簡單扼要的記錄,以便復習,消化,思考。
五、要養成良好的解題習慣
如仔細閱讀題目,看清數字,規范解題格式,部分同學(尤其是腦子比較好的同學),自己感覺很好,平時做題只是寫個答案,不注重解題過程,書寫不規范,在正規考試中即使答案對了,由於過程不完整被扣分較多。部分同學平時學習過程中自信心不足,做作業時免不了互相對答案,也不認真找出錯誤原因並加以改正。這些同學到了考場上常會出現心理性錯誤,導致「會而不對」,或是為了保證正確率,反復驗算,浪費很多時間,影響整體得分。這些問題都很難在短時間得以解決,必須在平時下功夫努力改正。「會而不對」是初三數學學習的大忌,常見的有審題失誤、計算錯誤等,平時都以為是粗心,其實這是一種不良的學習習慣,必須在第一輪復習中逐步克服,否則,後患無窮。
初三數學知識點 總結 歸納相關 文章 :
★ 初三數學知識點考點歸納總結
★ 初三數學知識點歸納總結
★ 初三數學知識點歸納人教版
★ 初三數學知識點上冊總結歸納
★ 最新初三數學知識點總結大全
★ 初三數學中考復習重點章節知識點歸納
★ 初三數學復習知識點總結
★ 初三中考數學知識點歸納總結
★ 中考數學知識點總結最全提綱
★ 初三數學知識點總結
var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();C. 高中數學知識點重點總結大全
總結 是指社會團體、企業單位和個人對某一階段的學習、它可以給我們下一階段的學習和工作生活做指導,因此十分有必須要寫一份總結哦。下面是我給大家帶來的高中數學知識點重點總結大全,以供大家參考!
高中數學知識點重點總結大全
集合的有關概念
1)集合(集):某些指定的對象集在一起就成為一個集合(集).其中每一個對象叫元素
注意:①集合與集合的元素是兩個不同的概念,教科書中是通過描述給出的,這與平面幾何中的點與直線的概念類似。
②集合中的元素具有確定性(a?A和a?A,二者必居其一)、互異性(若a?A,b?A,則a≠b)和無序性({a,b}與{b,a}表示同一個集合)。
③集合具有兩方面的意義,即:凡是符合條件的對象都是它的元素;只要是它的元素就必須符號條件
2)集合的表示 方法 :常用的有列舉法、描述法和圖文法
3)集合的分類:有限集,無限集,空集。
4)常用數集:N,Z,Q,R,N
子集、交集、並集、補集、空集、全集等概念
1)子集:若對_∈A都有_∈B,則AB(或AB);
2)真子集:AB且存在_0∈B但_0A;記為AB(或,且)
3)交集:A∩B={_|_∈A且_∈B}
4)並集:A∪B={_|_∈A或_∈B}
5)補集:CUA={_|_A但_∈U}
注意:A,若A≠?,則?A;
若且,則A=B(等集)
集合與元素
掌握有關的術語和符號,特別要注意以下的符號:(1)與、?的區別;(2)與的區別;(3)與的區別。
子集的幾個等價關系
①A∩B=AAB;②A∪B=BAB;③ABCuACuB;
④A∩CuB=空集CuAB;⑤CuA∪B=IAB。
交、並集運算的性質
①A∩A=A,A∩?=?,A∩B=B∩A;②A∪A=A,A∪?=A,A∪B=B∪A;
③Cu(A∪B)=CuA∩CuB,Cu(A∩B)=CuA∪CuB;
有限子集的個數:
設集合A的元素個數是n,則A有2n個子集,2n-1個非空子集,2n-2個非空真子集。
練習題:
已知集合M={_|_=m+,m∈Z},N={_|_=,n∈Z},P={_|_=,p∈Z},則M,N,P滿足關系()
A)M=NPB)MN=PC)MNPD)NPM
分析一:從判斷元素的共性與區別入手。
解答一:對於集合M:{_|_=,m∈Z};對於集合N:{_|_=,n∈Z}
對於集合P:{_|_=,p∈Z},由於3(n-1)+1和3p+1都表示被3除餘1的數,而6m+1表示被6除餘1的數,所以MN=P,故選B。
人教版 高一數學 知識點整理
考點一、映射的概念
1.了解對應大千世界的對應共分四類,分別是:一對一多對一一對多多對多
2.映射:設A和B是兩個非空集合,如果按照某種對應關系f,對於集合A中的任意一個元素_,在集合B中都存在的一個元素y與之對應,那麼,就稱對應f:A→B為集合A到集合B的一個映射(mapping).映射是特殊的對應,簡稱「對一」的對應。包括:一對一多對一
考點二、函數的概念
1.函數:設A和B是兩個非空的數集,如果按照某種確定的對應關系f,對於集合A中的任意一個數_,在集合B中都存在確定的數y與之對應,那麼,就稱對應f:A→B為集合A到集合B的一個函數。記作y=f(_),_A.其中_叫自變數,_的取值范圍A叫函數的定義域;與_的值相對應的y的值函數值,函數值的集合叫做函數的值域。函數是特殊的映射,是非空數集A到非空數集B的映射。
2.函數的三要素:定義域、值域、對應關系。這是判斷兩個函數是否為同一函數的依據。
3.區間的概念:設a,bR,且a
①(a,b)={_a
⑤(a,+∞)={__>a}⑥[a,+∞)={__≥a}⑦(-∞,b)={__
考點三、函數的表示方法
1.函數的三種表示方法列表法圖象法解析法
2.分段函數:定義域的不同部分,有不同的對應法則的函數。注意兩點:①分段函數是一個函數,不要誤認為是幾個函數。②分段函數的定義域是各段定義域的並集,值域是各段值域的並集。
考點四、求定義域的幾種情況
①若f(_)是整式,則函數的定義域是實數集R;
②若f(_)是分式,則函數的定義域是使分母不等於0的實數集;
③若f(_)是二次根式,則函數的定義域是使根號內的式子大於或等於0的實數集合;
④若f(_)是對數函數,真數應大於零。
⑤.因為零的零次冪沒有意義,所以底數和指數不能同時為零。
⑥若f(_)是由幾個部分的數學式子構成的,則函數的定義域是使各部分式子都有意義的實數集合;
⑦若f(_)是由實際問題抽象出來的函數,則函數的定義域應符合實際問題
高一數學知識點歸納大全
圓的方程定義:
圓的標准方程(_—a)2+(y—b)2=r2中,有三個參數a、b、r,即圓心坐標為(a,b),只要求出a、b、r,這時圓的方程就被確定,因此確定圓方程,須三個獨立條件,其中圓心坐標是圓的定位條件,半徑是圓的定形條件。
直線和圓的位置關系:
1、直線和圓位置關系的判定方法一是方程的觀點,即把圓的方程和直線的方程聯立成方程組,利用判別式Δ來討論位置關系。
①Δ>0,直線和圓相交、②Δ=0,直線和圓相切、③Δ<0,直線和圓相離。
方法二是幾何的觀點,即把圓心到直線的距離d和半徑R的大小加以比較。
①dR,直線和圓相離、
2、直線和圓相切,這類問題主要是求圓的切線方程、求圓的切線方程主要可分為已知斜率k或已知直線上一點兩種情況,而已知直線上一點又可分為已知圓上一點和圓外一點兩種情況。
3、直線和圓相交,這類問題主要是求弦長以及弦的中點問題。
切線的性質
⑴圓心到切線的距離等於圓的半徑;
⑵過切點的半徑垂直於切線;
⑶經過圓心,與切線垂直的直線必經過切點;
⑷經過切點,與切線垂直的直線必經過圓心;
當一條直線滿足
(1)過圓心;
(2)過切點;
(3)垂直於切線三個性質中的兩個時,第三個性質也滿足。
切線的判定定理
經過半徑的外端點並且垂直於這條半徑的直線是圓的切線。
切線長定理
從圓外一點作圓的兩條切線,兩切線長相等,圓心與這一點的連線平分兩條切線的夾角。
高中數學知識點重點總結大全相關 文章 :
★ 高中數學知識點總結及公式大全
★ 高中數學知識點全總結最全版
★ 高中數學知識點全總結
★ 高中數學知識點大全
★ 高一數學知識點匯總大全
★ 高中數學知識要點總結範文
★ 高中數學知識點總結歸納最新
★ 高中數學知識點總結
★ 高一數學知識點總結歸納
★ 高一數學知識點全面總結
D. 高二數學知識點總結
雙曲線方程典例分析
江西省永豐中學 劉 忠
一、求雙曲線的標准方程
求雙曲線的標准方程 或 (a、b>0),通常是利用雙曲線的有關概念及性質再 結合其它知識直接求出a、b或利用待定系數法.
例1 求與雙曲線 有公共漸近線,且過點 的雙曲線的共軛雙曲線方程.
解 令與雙曲線 有公共漸近線的雙曲線系方程為 ,將點 代入,得 ,∴雙曲線方程為 ,由共軛雙曲線的定義,可得此雙曲線的共軛雙曲線方程為 .
評 此例是「求與已知雙曲線共漸近線的雙曲線方程」類型的題.一般地,與雙曲線 有公共漸近線的雙曲線的方程可設為 (k�R,且k≠0);有公共焦點的雙曲線方程可設為 ,本題用的是待定系數法.
例2 雙曲線的實半軸與虛半軸長的積為 ,它的兩焦點分別為F1、F2,直線 過F2且與直線F1F2的夾角為 ,且 , 與線段F1F2的垂直平分線的交點為P,線段PF2與雙曲線的交點為Q,且 ,建立適當的坐標系,求雙曲線的方程.
解 以F1F2的中點為原點,F1、F2所在直線為x軸建立坐標系,則所求雙曲線方程為 (a>0,b>0),設F2(c,0),不妨設 的方程為 ,它與y軸交點 ,由定比分點坐標公式,得Q點的坐標為 ,由點Q在雙曲線上可得 ,又 ,
∴ , ,∴雙曲線方程為 .
評 此例用的是直接法.
二、雙曲線定義的應用
1、第一定義的應用
例3 設F1、F2為雙曲線 的兩個焦點,點P在雙曲線上,且滿足∠F1PF2=900,求ΔF1PF2的面積.
解 由雙曲線的第一定義知, ,兩邊平方,得 .
∵∠F1PF2=900,∴ ,
∴ ,
∴ .
2、第二定義的應用
例4 已知雙曲線 的離心率 ,左、右焦點分別為F1、F2,左准線為l,能否在雙曲線左支上找到一點P,使 是 P到l的距離d與 的比例中項?
解 設存在點 ,則 ,由雙曲線的第二定義,得 ,
∴ , ,又 ,
即 ,解之,得 ,
∵ ,
∴ , 矛盾,故點P不存在.
評 以上二例若不用雙曲線的定義得到焦半徑 、
或其關系,解題過程將復雜得多.
三、雙曲線性質的應用
例5 設雙曲線 ( )的半焦距為c,
直線l過(a,0)、(0,b)兩點,已知原點到 的距離為 ,
求雙曲線的離心率.
解析 這里求雙曲線的離心率即求 ,是個幾何問題,怎麼把
題目中的條件與之聯系起來呢?如圖1,
∵ , , ,由面積法知ab= ,考慮到 ,
知 即 ,亦即 ,注意到a<b的條件,可求得 .
四、與雙曲線有關的軌跡問題
例6 以動點P為圓心的圓與⊙A: 及⊙B: 都外切,求點P的軌跡方程.
解 設動點P(x,y),動圓半徑為r,由題意知 , , .
∴ .∴ , ,據 雙曲線的定義知,點P的軌跡是以A、B為焦點的雙曲線的右支,方程為 : .
例 7 如圖2,從雙曲線 上任一點Q引直線 的垂線,垂足為N,求線段QN的中點P的軌跡方程.
解析 因點P隨Q的運動而運動,而點Q在已知雙曲線上,
故可從尋求 Q點的坐標與P點的坐標之間的關系入手,用轉移法達到目的.
設動點P的坐標為 ,點Q的坐標為 ,
則 N點的坐標為 .
∵點 N在直線 上,∴ ……①
又∵PQ垂直於直線 ,∴ ,
即 ……②
聯立 ①、②解得 .又∵點N 在雙曲線 上,
∴ ,
即 ,化簡,得點P的軌跡方程為: .
五、與雙曲線有關的綜合題
例8 已知雙曲線 ,其左右焦點分別為F1、F2,直線l過其右焦點F2且與雙曲線 的右支交於A、B兩點,求 的最小值.
解 設 , ,( 、 ).由雙曲線的第二定義,得
, ,
∴ ,
設直線l的傾角為θ,∵l與雙曲線右支交於兩點A、B,∴ .
①當 時,l的方程為 ,代入雙曲線方程得
.
由韋達定理得: .
∴ .
②當 時,l的方程為 ,∴ ,∴ .
綜①②所述,知所求最小值為 .
E. 高中數學知識點全總結
高中數學知識點全總結 : 1、數列或者三角函數;2、立體幾何;3、概率統計;4、圓錐曲線;5、導數;6、選修題(參數方程和不等式)。
1、三角函數
對於三角函數的考法共有兩種。分別是解三角形和三角函數本身。大概百分之十到二十的概率考解三角形,百分之八十到九十概率考對於三角函數本身的熟練運用。
2、概率統計
以理科數學為例,考點覆蓋概率統計必修和選修的各個章節的內容,考查了抽樣法、統計圖表、數據的數字特徵、用樣本估計整體、回歸分析、獨立性檢驗、古典概型、幾何概型、條件概率、相互獨立事件的概率、獨立重復試驗的概率、離散型隨機變數的分布列、數學期望與方差、超幾何分布、二項分布、正態分布等基礎知識和基本方法。
3、立體幾何
這道題有兩到三問,前面問的某條線的大小或者證明某個線或面與另外一個線或面平行或垂直,最後一問是求二面角。
4、數列
數列主要是求解通項公式和前n項和。首先是通項公式,要看題目中給出的條件形式,不同的形式對應不同的解題方法,其中主要包括公式法(定義法)、累加法、累乘法、待定系數法、數學歸納法 倒數變化法等,熟練應用這些方法並積累例題達到熟練的程度。
5、圓錐曲線
一般套路就是,前半部分是對基本性質的考察,後半部分考察與直線相交,且後半部分的步驟幾乎都是一致的。
F. 蘇教版初中上冊數學知識點總結
蘇教版七年級數學上冊基本知識點
第一章
我們與數學同行(略)
第二章
有理數
一、正數和負數
⒈正數和負數的概念
負數:比0小的數
正數:比0大的數
0既不是正數,也不是負數
注意:①字母a可以表示任意數,當a表示正數時,-a是負數;當a表示負數時,-a是正數;當a表示0時,-a仍是0。(如果出判斷題為:帶正號的數是正數,帶負號的數是負數,這種說法是錯誤的,例如+a,-a就不能做出簡單判斷)
②正數有時也可以在前面加「+」,有時「+」省略不寫。所以省略「+」的正數的符號是正號。
2.具有相反意義的量
若正數表示某種意義的量,則負數可以表示具有與該正數相反意義的量,比如:
零上8℃表示為:+8℃;零下8℃表示為:-8℃
3.0表示的意義
⑴0表示「
沒有」,如教室里有0個人,就是說教室里沒有人;
⑵0是正數和負數的分界線,0既不是正數,也不是負數。
未完:參考資料:https://wenku..com/view/49f368483b3567ec102d8acb.html
G. 初中數學知識點總結梳理
為了方便大家系統的復習初中數學的知識點,這篇文章給大家總結梳理了初中數學重要知識點,供大家參考學習。
(1)定義:由整數和分數組成的數。包括:正整數、0、負整數,正分數、負分數。可以寫成兩個整之比的形式。
(2)數軸:在數學中,可以用一條直線上的點表示數,這條直線叫做數軸。
(3)相反數:相反數是一個數學術語,指絕對值相等,正負號相反的兩個數互為相反數。
(4)絕對值:絕對值是指一個數在數軸上所對應點到原點的距離。正數的絕對值是它本身,負數的絕對值是它的相反數;0的絕對值是0,兩個負數,絕對值大的反而小。
(5)有理數的加減法
同號相加,到相同符號,並把絕對值相加。異號相加,取絕對值大的加數的符號,並用較大的絕對值減去較小的絕對值。
(6)有理數的乘法
兩數相乘,同號得正,異號得負,並把絕對值相乘。
任何數與0相乘,積為0。例:0×1=0
(7)有理數的除法
除以一個不為0的數,等於乘這個數的倒數。
兩數相除,同號得正,異號得負,並把絕對值相除。0除
以任何一個不為0的數,都得0。
(8)有理數的乘方
求n個相同因數乘積的運算,叫做乘方,乘方的結果叫做冪。其中,a叫做底數,n叫做指數。當aⁿ看作a的n次乘方的結果時,也可讀作「a的n次冪」或「a的n次方」。
(1)整式:是單項式和多項式的統稱,是有理式的一部分,在有理式中可以包含加,減,乘,除、乘方五種運算,但在整式中除數不能含有字母。
①單項式:由數或字母的積組成的代數式叫做單項式,單獨的一個數或一個字母也叫做單項式。
②多項式:由若干個單項式相加組成的代數式叫做多項式。
③系數:單項式中所有字母的指數的和叫做它的次數。
④次數:一個單項式中,所有變數字母的指數之和,叫做這個單項式的次數。
⑤項:組成多項式的每個單項式叫做多項式的項。
⑥多項式的次數:多項式中,次數最高的項的次數叫做這個多項式的次數。
⑦同類項:多項式中,所含字母相同,並且相同字母的指數也相同的項叫做同類項。
⑧合並同類項:把多項式中的同類項合並成一項,叫做合並同類項。
(2)整式加減
整式的加減運算時,如果遇到括弧先去掉括弧,再合並同類項。
(1)定義:
一元一次方程指只含有一個未知數、未知數的最高次數為1且兩邊都為整式的等式,叫做一元一次方程。求出方程中未知數的值叫做方程式的解。
(2)解一元一次方程的步驟
①去分母:把系數化成整數。
②去括弧
③移項:把等式一邊的某項變號後移到另一邊。
④合並同類項
⑤系數化為1。
(1)相交線
在同一平面內,兩條直線的位置關系有相交和平行兩種。如果兩條直線只有一個公共點時,稱這兩條直線相交。
(2)垂線
當兩條直線相交所成的四個角中,有一個角是直角時,即兩條直線互相垂直,其中一條直線叫做另一直線的垂線,交點叫垂足。
(3)同位角
兩條直線a,b被第三條直線c所截(或說a,b相交c),在截線c的同旁,被截兩直線a,b的同一側的角,我們把這樣的兩個角稱為同位角。
(4)內錯角
兩條直線被第三條直線所截,兩個角分別在截線的兩側,且夾在兩條被截直線之間,具有這樣位置關系的一對角叫做內錯角。
(5)同旁內角
兩條直線被第三條直線所截,在截線同旁,且在被截線之內的兩角,叫做同旁內角。
(6)平行線
幾何中,在同一平面內,永不相交(也永不重合)的兩條直線叫做平行線。
平行線的性質:①兩直線平行,同位角相等;②兩直線平行,內錯角相等;③兩直線平行,同旁內角互補。
(7)平移
平移,是指在同一平面內,將一個圖形上的所有點都按照某個直線方向做相同距離的移動,這樣的圖形運動叫做圖形的平移運動,簡稱平移。
(1)平方根
平方根,又叫二次方根,表示為〔±√ ̄〕,其中屬於非負數的平方根稱之為算術平方根。一個正數有兩個實平方根,它們互為相反數,負數沒有平方根。
(2)立方根
如果一個數的立方等於a,那麼這個數叫a的立方根,也稱為三次方根。
立方根性質
①在實數范圍內,任何實數的立方根只有一個
②在實數范圍內,負數不能開平方,但可以開立方。
③0的立方根是0
(3)實數
實數,是有理數和無理數的總稱。實數具有封閉性、有序性、傳遞性、稠密性、完備性等。
(1)定義
二元一次方程是指含有兩個未知數(例如x和y),並且所含未知數的項的次數都是1的方程。兩個結合在一起的共含有兩個未知數的一次方程叫二元一次方程組。
(2)解二元一次方程的方法
①代入消元法。
②加減消元法。
(1)二次函數的三種表達式
二次函數的一般式為:y=ax²+bx+c(a≠0)。
二次函數的頂點式:y=a(x-h)²+k 頂點坐標為(h,k)
二次函數的交點式:y=a(x-x₁)(x-x₂) 函數與圖像交於(x₁,0)和(x₂,0)
(2)二次函數的性質
①二次函數的圖像是拋物線,拋物線是軸對稱圖形。對稱軸為直線x=-b/2a。
②二次項系數a決定拋物線的開口方向和大小。
③一次項系數b和二次項系數a共同決定對稱軸的位置。
④常數項c決定拋物線與y軸交點。拋物線與y軸交於(0,c)。
(3)二次函數的對稱軸公式
二次函數圖像是軸對稱圖形。對稱軸為直線x=-b/2a。
對稱軸與二次函數圖像唯一的交點為二次函數圖象的頂點P。
特別地,當b=0時,二次函數圖像的對稱軸是y軸(即直線x=0)。
a,b同號,對稱軸在y軸左側;
a,b異號,對稱軸在y軸右側。
H. 數學知識點總結越詳細越好
一、基本知識
一、數與代數A、數與式:1、有理數有理數:①整數→正整數/0/負整數②分數→正分數/負分數
數軸:①畫一條水平直線,在直線上取一點表示0(原點),選取某一長度作為單位長度,規定直線上向右的方向為正方向,就得到數軸。②任何一個有理數都可以用數軸上的一個點來表示。③如果兩個數只有符號不同,那麼我們稱其中一個數為另外一個數的相反數,也稱這兩個數互為相反數。在數軸上,表示互為相反數的兩個點,位於原點的兩側,並且與原點距離相等。④數軸上兩個點表示的數,右邊的總比左邊的大。正數大於0,負數小於0,正數大於負數。
絕對值:①在數軸上,一個數所對應的點與原點的距離叫做該數的絕對值。②正數的絕對值是他的本身、負數的絕對值是他的相反數、0的絕對值是0。兩個負數比較大小,絕對值大的反而小。
有理數的運算:加法:①同號相加,取相同的符號,把絕對值相加。②異號相加,絕對值相等時和為0;絕對值不等時,取絕對值較大的數的符號,並用較大的絕對值減去較小的絕對值。③一個數與0相加不變。
減法:減去一個數,等於加上這個數的相反數。
乘法:①兩數相乘,同號得正,異號得負,絕對值相乘。②任何數與0相乘得0。③乘積為1的兩個有理數互為倒數。
除法:①除以一個數等於乘以一個數的倒數。②0不能作除數。
乘方:求N個相同因數A的積的運算叫做乘方,乘方的結果叫冪,A叫底數,N叫次數。
混合順序:先算乘法,再算乘除,最後算加減,有括弧要先算括弧里的。
2、實數 無理數:無限不循環小數叫無理數
平方根:①如果一個正數X的平方等於A,那麼這個正數X就叫做A的算術平方根。②如果一個數X的平方等於A,那麼這個數X就叫做A的平方根。③一個正數有2個平方根/0的平方根為0/負數沒有平方根。④求一個數A的平方根運算,叫做開平方,其中A叫做被開方數。
立方根:①如果一個數X的立方等於A,那麼這個數X就叫做A的立方根。②正數的立方根是正數、0的立方根是0、負數的立方根是負數。③求一個數A的立方根的運算叫開立方,其中A叫做被開方數。
實數:①實數分有理數和無理數。②在實數范圍內,相反數,倒數,絕對值的意義和有理數范圍內的相反數,倒數,絕對值的意義完全一樣。③每一個實數都可以在數軸上的一個點來表示。
3、代數式
代數式:單獨一個數或者一個字母也是代數式。
合並同類項:①所含字母相同,並且相同字母的指數也相同的項,叫做同類項。②把同類項合並成一項就叫做合並同類項。③在合並同類項時,我們把同類項的系數相加,字母和字母的指數不變。
4、整式與分式
整式:①數與字母的乘積的代數式叫單項式,幾個單項式的和叫多項式,單項式和多項式統稱整式。②一個單項式中,所有字母的指數和叫做這個單項式的次數。③一個多項式中,次數最高的項的次數叫做這個多項式的次數。
整式運算:加減運算時,如果遇到括弧先去括弧,再合並同類項。
冪的運算:AM+AN=A(M+N)
(AM)N=AMN
(A/B)N=AN/BN 除法一樣。
整式的乘法:①單項式與單項式相乘,把他們的系數,相同字母的冪分別相乘,其餘字母連同他的指數不變,作為積的因式。②單項式與多項式相乘,就是根據分配律用單項式去乘多項式的每一項,再把所得的積相加。③多項式與多項式相乘,先用一個多項式的每一項乘另外一個多項式的每一項,再把所得的積相加。
公式兩條:平方差公式/完全平方公式
整式的除法:①單項式相除,把系數,同底數冪分別相除後,作為商的因式;對於只在被除式里含有的字母,則連同他的指數一起作為商的一個因式。②多項式除以單項式,先把這個多項式的每一項分別除以單項式,再把所得的商相加。
分解因式:把一個多項式化成幾個整式的積的形式,這種變化叫做把這個多項式分解因式。
方法:提公因式法、運用公式法、分組分解法、十字相乘法。
分式:①整式A除以整式B,如果除式B中含有分母,那麼這個就是分式,對於任何一個分式,分母不為0。②分式的分子與分母同乘以或除以同一個不等於0的整式,分式的值不變。
分式的運算:
乘法:把分子相乘的積作為積的分子,把分母相乘的積作為積的分母。
除法:除以一個分式等於乘以這個分式的倒數。
加減法:①同分母分式相加減,分母不變,把分子相加減。②異分母的分式先通分,化為同分母的分式,再加減。
分式方程:①分母中含有未知數的方程叫分式方程。②使方程的分母為0的解稱為原方程的增根。
B、方程與不等式
1、方程與方程組
一元一次方程:①在一個方程中,只含有一個未知數,並且未知數的指數是1,這樣的方程叫一元一次方程。②等式兩邊同時加上或減去或乘以或除以(不為0)一個代數式,所得結果仍是等式。
解一元一次方程的步驟:去分母,移項,合並同類項,未知數系數化為1。
二元一次方程:含有兩個未知數,並且所含未知數的項的次數都是1的方程叫做二元一次方程。
二元一次方程組:兩個二元一次方程組成的方程組叫做二元一次方程組。
適合一個二元一次方程的一組未知數的值,叫做這個二元一次方程的一個解。
二元一次方程組中各個方程的公共解,叫做這個二元一次方程的解。
解二元一次方程組的方法:代入消元法/加減消元法。
一元二次方程:只有一個未知數,並且未知數的項的最高系數為2的方程
1)一元二次方程的二次函數的關系
大家已經學過二次函數(即拋物線)了,對他也有很深的了解,好像解法,在圖象中表示等等,其實一元二次方程也可以用二次函數來表示,其實一元二次方程也是二次函數的一個特殊情況,就是當Y的0的時候就構成了一元二次方程了。那如果在平面直角坐標系中表示出來,一元二次方程就是二次函數中,圖象與X軸的交點。也就是該方程的解了
2)一元二次方程的解法
大家知道,二次函數有頂點式(-b/2a,4ac-b2/4a),這大家要記住,很重要,因為在上面已經說過了,一元二次方程也是二次函數的一部分,所以他也有自己的一個解法,利用他可以求出所有的一元一次方程的解
(1)配方法
利用配方,使方程變為完全平方公式,在用直接開平方法去求出解
(2)分解因式法
提取公因式,套用公式法,和十字相乘法。在解一元二次方程的時候也一樣,利用這點,把方程化為幾個乘積的形式去解
(3)公式法
這方法也可以是在解一元二次方程的萬能方法了,方程的根X1={-b+√[b2-4ac)]}/2a,X2={-b-√[b2-4ac)]}/2a
3)解一元二次方程的步驟:
(1)配方法的步驟:
先把常數項移到方程的右邊,再把二次項的系數化為1,再同時加上1次項的系數的一半的平方,最後配成完全平方公式
(2)分解因式法的步驟:
把方程右邊化為0,然後看看是否能用提取公因式,公式法(這里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化為乘積的形式
(3)公式法
就把一元二次方程的各系數分別代入,這里二次項的系數為a,一次項的系數為b,常數項的系數為c
4)韋達定理
利用韋達定理去了解,韋達定理就是在一元二次方程中,二根之和=-b/a,二根之積=c/a
也可以表示為x1+x2=-b/a,x1x2=c/a。利用韋達定理,可以求出一元二次方程中的各系數,在題目中很常用
5)一元一次方程根的情況
利用根的判別式去了解,根的判別式可在書面上可以寫為「△」,讀作「diao ta」,而△=b2-4ac,這里可以分為3種情況:
I當△>0時,一元二次方程有2個不相等的實數根;
II當△=0時,一元二次方程有2個相同的實數根;
III當△<0時,一元二次方程沒有實數根(在這里,學到高中就會知道,這里有2個虛數根)
2、不等式與不等式組
不等式:①用符號〉,=,〈號連接的式子叫不等式。②不等式的兩邊都加上或減去同一個整式,不等號的方向不變。③不等式的兩邊都乘以或者除以一個正數,不等號方向不變。④不等式的兩邊都乘以或除以同一個負數,不等號方向相反。
不等式的解集:①能使不等式成立的未知數的值,叫做不等式的解。②一個含有未知數的不等式的所有解,組成這個不等式的解集。③求不等式解集的過程叫做解不等式。
一元一次不等式:左右兩邊都是整式,只含有一個未知數,且未知數的最高次數是1的不等式叫一元一次不等式。
一元一次不等式組:①關於同一個未知數的幾個一元一次不等式合在一起,就組成了一元一次不等式組。②一元一次不等式組中各個不等式的解集的公共部分,叫做這個一元一次不等式組的解集。③求不等式組解集的過程,叫做解不等式組。
一元一次不等式的符號方向:
在一元一次不等式中,不像等式那樣,等號是不變的,他是隨著你加或乘的運算改變。
在不等式中,如果加上同一個數(或加上一個正數),不等式符號不改向;例如:A>B,A+C>B+C
在不等式中,如果減去同一個數(或加上一個負數),不等式符號不改向;例如:A>B,A-C>B-C
在不等式中,如果乘以同一個正數,不等號不改向;例如:A>B,A*C>B*C(C>0)
在不等式中,如果乘以同一個負數,不等號改向;例如:A>B,A*C<B*C(C<0)
如果不等式乘以0,那麼不等號改為等號
所以在題目中,要求出乘以的數,那麼就要看看題中是否出現一元一次不等式,如果出現了,那麼不等式乘以的數就不等為0,否則不等式不成立;
3、函數
變數:因變數,自變數。
在用圖象表示變數之間的關系時,通常用水平方向的數軸上的點自變數,用豎直方向的數軸上的點表示因變數。
一次函數:①若兩個變數X,Y間的關系式可以表示成Y=KX+B(B為常數,K不等於0)的形式,則稱Y是X的一次函數。②當B=0時,稱Y是X的正比例函數。
一次函數的圖象:①把一個函數的自變數X與對應的因變數Y的值分別作為點的橫坐標與縱坐標,在直角坐標系內描出它的對應點,所有這些點組成的圖形叫做該函數的圖象。②正比例函數Y=KX的圖象是經過原點的一條直線。③在一次函數中,當K〈0,B〈O,則經234象限;當K〈0,B〉0時,則經124象限;當K〉0,B〈0時,則經134象限;當K〉0,B〉0時,則經123象限。④當K〉0時,Y的值隨X值的增大而增大,當X〈0時,Y的值隨X值的增大而減少。
二空間與圖形
A、圖形的認識
1、點,線,面
點,線,面:①圖形是由點,線,面構成的。②面與面相交得線,線與線相交得點。③點動成線,線動成面,面動成體。
展開與折疊:①在稜柱中,任何相鄰的兩個面的交線叫做棱,側棱是相鄰兩個側面的交線,稜柱的所有側棱長相等,稜柱的上下底面的形狀相同,側面的形狀都是長方體。②N稜柱就是底面圖形有N條邊的稜柱。
截一個幾何體:用一個平面去截一個圖形,截出的面叫做截面。
視圖:主視圖,左視圖,俯視圖。
多邊形:他們是由一些不在同一條直線上的線段依次首尾相連組成的封閉圖形。
弧、扇形:①由一條弧和經過這條弧的端點的兩條半徑所組成的圖形叫扇形。②圓可以分割成若干個扇形。
2、角
線:①線段有兩個端點。②將線段向一個方向無限延長就形成了射線。射線只有一個端點。③將線段的兩端無限延長就形成了直線。直線沒有端點。④經過兩點有且只有一條直線。
比較長短:①兩點之間的所有連線中,線段最短。②兩點之間線段的長度,叫做這兩點之間的距離。
角的度量與表示:①角由兩條具有公共端點的射線組成,兩條射線的公共端點是這個角的頂點。②一度的1/60是一分,一分的1/60是一秒。
角的比較:①角也可以看成是由一條射線繞著他的端點旋轉而成的。②一條射線繞著他的端點旋轉,當終邊和始邊成一條直線時,所成的角叫做平角。始邊繼續旋轉,當他又和始邊重合時,所成的角叫做周角。③從一個角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線。
平行:①同一平面內,不相交的兩條直線叫做平行線。②經過直線外一點,有且只有一條直線與這條直線平行。③如果兩條直線都與第3條直線平行,那麼這兩條直線互相平行。
垂直:①如果兩條直線相交成直角,那麼這兩條直線互相垂直。②互相垂直的兩條直線的交點叫做垂足。③平面內,過一點有且只有一條直線與已知直線垂直。
垂直平分線:垂直和平分一條線段的直線叫垂直平分線。
垂直平分線垂直平分的一定是線段,不能是射線或直線,這根據射線和直線可以無限延長有關,再看後面的,垂直平分線是一條直線,所以在畫垂直平分線的時候,確定了2點後(關於畫法,後面會講)一定要把線段穿出2點。
垂直平分線定理:
性質定理:在垂直平分線上的點到該線段兩端點的距離相等;
判定定理:到線段2端點距離相等的點在這線段的垂直平分線上
角平分線:把一個角平分的射線叫該角的角平分線。
定義中有幾個要點要注意一下的,就是角的角平分線是一條射線,不是線段也不是直線,很多時,在題目中會出現直線,這是角平分線的對稱軸才會用直線的,這也涉及到軌跡的問題,一個角個角平分線就是到角兩邊距離相等的點
性質定理:角平分線上的點到該角兩邊的距離相等
判定定理:到角的兩邊距離相等的點在該角的角平分線上
正方形:一組鄰邊相等的矩形是正方形
性質:正方形具有平行四邊形、菱形、矩形的一切性質
判定:1、對角線相等的菱形2、鄰邊相等的矩形
二、基本定理
1、過兩點有且只有一條直線
2、兩點之間線段最短
3、同角或等角的補角相等
4、同角或等角的餘角相等
5、過一點有且只有一條直線和已知直線垂直
6、直線外一點與直線上各點連接的所有線段中,垂線段最短
7、平行公理 經過直線外一點,有且只有一條直線與這條直線平行
8、如果兩條直線都和第三條直線平行,這兩條直線也互相平行
9、同位角相等,兩直線平行
10、內錯角相等,兩直線平行
11、同旁內角互補,兩直線平行
12、兩直線平行,同位角相等
13、兩直線平行,內錯角相等
14、兩直線平行,同旁內角互補
15、定理 三角形兩邊的和大於第三邊
16、推論 三角形兩邊的差小於第三邊
17、三角形內角和定理 三角形三個內角的和等於180°
18、推論1 直角三角形的兩個銳角互余
19、推論2 三角形的一個外角等於和它不相鄰的兩個內角的和
20、推論3 三角形的一個外角大於任何一個和它不相鄰的內角
21、全等三角形的對應邊、對應角相等
22、邊角邊公理(SAS) 有兩邊和它們的夾角對應相等的兩個三角形全等
23、角邊角公理( ASA)有兩角和它們的夾邊對應相等的 兩個三角形全等
24、推論(AAS) 有兩角和其中一角的對邊對應相等的兩個三角形全等
25、邊邊邊公理(SSS) 有三邊對應相等的兩個三角形全等
26、斜邊、直角邊公理(HL) 有斜邊和一條直角邊對應相等的兩個直角三角形全等
27、定理1 在角的平分線上的點到這個角的兩邊的距離相等
28、定理2 到一個角的兩邊的距離相同的點,在這個角的平分線上
29、角的平分線是到角的兩邊距離相等的所有點的集合
30、等腰三角形的性質定理 等腰三角形的兩個底角相等 (即等邊對等角)
31、推論1 等腰三角形頂角的平分線平分底邊並且垂直於底邊
32、等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合
33、推論3 等邊三角形的各角都相等,並且每一個角都等於60°
34、等腰三角形的判定定理 如果一個三角形有兩個角相等,那麼這兩個角所對的邊也相等(等角對等邊)
35、推論1 三個角都相等的三角形是等邊三角形
36、推論 2 有一個角等於60°的等腰三角形是等邊三角形
37、在直角三角形中,如果一個銳角等於30°那麼它所對的直角邊等於斜邊的一半
38、直角三角形斜邊上的中線等於斜邊上的一半
39、定理 線段垂直平分線上的點和這條線段兩個端點的距離相等
40、逆定理 和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上
41、線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合
42、定理1 關於某條直線對稱的兩個圖形是全等形
43、定理 2 如果兩個圖形關於某直線對稱,那麼對稱軸是對應點連線的垂直平分線
44、定理3 兩個圖形關於某直線對稱,如果它們的對應線段或延長線相交,那麼交點在對稱軸上
45、逆定理 如果兩個圖形的對應點連線被同一條直線垂直平分,那麼這兩個圖形關於這條直線對稱
46、勾股定理 直角三角形兩直角邊a、b的平方和、等於斜邊c的平方,即a2+b2=c2
47、勾股定理的逆定理 如果三角形的三邊長a、b、c有關系a2+b2=c2,那麼這個三角形是直角三角形
48、定理 四邊形的內角和等於360°
49、四邊形的外角和等於360°
50、多邊形內角和定理 n邊形的內角的和等於(n-2)×180°
51、推論 任意多邊的外角和等於360°
52、平行四邊形性質定理1 平行四邊形的對角相等
53、平行四邊形性質定理2 平行四邊形的對邊相等
54、推論 夾在兩條平行線間的平行線段相等
55、平行四邊形性質定理3 平行四邊形的對角線互相平分
56、平行四邊形判定定理1 兩組對角分別相等的四邊形是平行四邊形
57、平行四邊形判定定理2 兩組對邊分別相等的四邊 形是平行四邊形
58、平行四邊形判定定理3 對角線互相平分的四邊形是平行四邊形
59、平行四邊形判定定理4 一組對邊平行相等的四邊形是平行四邊形
60、矩形性質定理1 矩形的四個角都是直角
61、矩形性質定理2 矩形的對角線相等
62、矩形判定定理1 有三個角是直角的四邊形是矩形
63、矩形判定定理2 對角線相等的平行四邊形是矩形
64、菱形性質定理1 菱形的四條邊都相等
65、菱形性質定理2 菱形的對角線互相垂直,並且每一條對角線平分一組對角
66、菱形面積=對角線乘積的一半,即S=(a×b)÷2
67、菱形判定定理1 四邊都相等的四邊形是菱形
68、菱形判定定理2 對角線互相垂直的平行四邊形是菱形
69、正方形性質定理1 正方形的四個角都是直角,四條邊都相等
70、正方形性質定理2正方形的兩條對角線相等,並且互相垂直平分,每條對角線平分一組對角
71、定理1 關於中心對稱的兩個圖形是全等的
72、定理2 關於中心對稱的兩個圖形,對稱點連線都經過對稱中心,並且被對稱中心平分
73、逆定理 如果兩個圖形的對應點連線都經過某一點,並且被這一點平分,那麼這兩個圖形關於這一點對稱
74、等腰梯形性質定理 等腰梯形在同一底上的兩個角相等
75、等腰梯形的兩條對角線相等
76、等腰梯形判定定理 在同一底上的兩個角相等的梯 形是等腰梯形
77、對角線相等的梯形是等腰梯形
78、平行線等分線段定理 如果一組平行線在一條直線上截得的線段相等,那麼在其他直線上截得的線段也相等
79、推論1 經過梯形一腰的中點與底平行的直線,必平分另一腰
80、推論2 經過三角形一邊的中點與另一邊平行的直線,必平分第三邊
81、三角形中位線定理 三角形的中位線平行於第三邊,並且等於它的一半
82、梯形中位線定理 梯形的中位線平行於兩底,並且等於兩底和的一半 L=(a+b)÷2 S=L×h
83、(1)比例的基本性質:如果a:b=c:d,那麼ad=bc 如果 ad=bc ,那麼a:b=c:d
84、(2)合比性質:如果a/b=c/d,那麼(a±b)/b=(c±d)/d
85、(3)等比性質:如果a/b=c/d=…=m/n(b+d+…+n≠0),
那麼(a+c+…+m)/(b+d+…+n)=a/b
86、平行線分線段成比例定理 三條平行線截兩條直線,所得的對應線段成比例
87、推論 平行於三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應線段成比例
88、定理 如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,那麼這條直線平行於三角形的第三邊
89、平行於三角形的一邊,並且和其他兩邊相交的直線, 所截得的三角形的三邊與原三角形三邊對應成比例
90、定理 平行於三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似
91、相似三角形判定定理1 兩角對應相等,兩三角形相似(ASA)
92、直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似
93、判定定理2 兩邊對應成比例且夾角相等,兩三角形相似(SAS)
94、判定定理3 三邊對應成比例,兩三角形相似(SSS)
95、定理 如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應成比例,那麼這兩個直角三角形相似
96、性質定理1 相似三角形對應高的比,對應中線的比與對應角平分線的比都等於相似比
97、性質定理2 相似三角形周長的比等於相似比
98、性質定理3 相似三角形面積的比等於相似比的平方
99、任意銳角的正弦值等於它的餘角的餘弦值,任意銳角的餘弦值等於它的餘角的正弦值
100、任意銳角的正切值等於它的餘角的餘切值,任意銳角的餘切值等於它的餘角的正切值
101、圓是定點的距離等於定長的點的集合
102、圓的內部可以看作是圓心的距離小於半徑的點的集合
103、圓的外部可以看作是圓心的距離大於半徑的點的集合
104、同圓或等圓的半徑相等
105、到定點的距離等於定長的點的軌跡,是以定點為圓心,定長為半徑的圓
106、和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直平分線
107、到已知角的兩邊距離相等的點的軌跡,是這個角的平分線
108、到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距離相等的一條直線
109、定理 不在同一直線上的三點確定一個圓。
110、垂徑定理 垂直於弦的直徑平分這條弦並且平分弦所對的兩條弧
111、推論1
①平分弦(不是直徑)的直徑垂直於弦,並且平分弦所對的兩條弧
②弦的垂直平分線經過圓心,並且平分弦所對的兩條弧
③平分弦所對的一條弧的直徑,垂直平分弦,並且平分弦所對的另一條弧
112、推論2 圓的兩條平行弦所夾的弧相等
113、圓是以圓心為對稱中心的中心對稱圖形
114、定理 在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等
115、推論 在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那麼它們所對應的其餘各組量都相等
116、定理 一條弧所對的圓周角等於它所對的圓心角的一半
117、推論1 同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等
118、推論2 半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑
119、推論3 如果三角形一邊上的中線等於這邊的一半,那麼這個三角形是直角三角形
120、定理 圓的內接四邊形的對角互補,並且任何一個外角都等於它的內對角
121、①直線L和⊙O相交 d<r
②直線L和⊙O相切 d=r
③直線L和⊙O相離 d>r
122、切線的判定定理 經過半徑的外端並且垂直於這條半徑的直線是圓的切線
123、切線的性質定理 圓的切線垂直於經過切點的半徑
124、推論1 經過圓心且垂直於切線的直線必經過切點
125、推論2 經過切點且垂直於切線的直線必經過圓心
126、切線長定理 從圓外一點引圓的兩條切線,它們的切線長相等圓心和這一點的連線平分兩條切線的夾角