⑴ 初中幾何中的公理有哪些
1、直線公理
(1)經過兩點只有一條直線。或者兩點確定一條直線。
(2)兩條直線相交,只有一個交點。
2、平行線的平行公理
(1)經過直線外一點,有且只有一條直線與已知直線平行。
(2)兩條平行線被第三條直線所截,同位角相等,內錯角相等,同旁內角互補。
3、線段公理
兩點之間,線段最短。註:直線上兩個點之間的距離叫做線段,這兩個點叫做線段的兩個端點。
4、三角形中位線定理
三角形的中位線平行於第三邊(不與中位線接觸),並且等於第三邊的一半。
5、垂線公理
(1)在同一平面內,過一點(直線上或直線外)有且只有一條直線與已知直線垂直。
(2)直線外一點與直線上各點連接的所有線段中,垂線段最短。(簡稱垂線段最短)
⑵ 求初中所有數學公理
公理(不需證明)
1、線段公理:兩點之間,線段最短。
2、直線公理:過兩點有且只有一條直線。
3、平行公理:過直線外一點有且只有一條直線與已知直線平行。
4、垂直性質:經過直線外或直線上一點,有且只有一條直線與已知直線垂直 。
5、兩直線被第三條直線所截,如果同位角相等,那麼這兩條直線平行。
6、兩條平行線被第三條直線所截,同位角相等。
7、兩邊及其夾角對應相等的兩個三角形全等。(SAS)
8、兩角及其夾邊對應相等的兩個三角形全等。(ASA)
9、三邊對應相等的兩個三角形全等。(SSS)
10、全等三角形的對應邊相等,對應角相等.。
⑶ 初中數學中公理有哪些
初中數學中公理如下:
1、線段公理:兩點之間,線段最短。
2、直線公理:過兩點有且只有一條直線。
3、平行公理:過直線外一點有且只有一條直線與已知直線平行。
4、垂直性質:經過直線外或直線上一點,有且只有一條直線與已知直線垂直。
5、兩直線被第三條直線所截,如果同位角相等,那麼這兩條直線平行。
6、兩條平行線被第三條直線所截,同位角相等。
7、兩邊及其夾角對應相等的兩個三角形全等。(SAS)
8、兩角及其夾邊對應相等的兩個三角形全等。(ASA)
9、三邊對應相等的兩個三角形全等。(SSS)
10、全等三角形的對應邊相等,對應角相等。
(3)初中階段數學公理有哪些擴展閱讀
證明兩直線平行,同位角相等的方法:
平行線的性質:兩直線平行,同位角相等。
兩直線平行,內錯角相等。兩直線平行,同旁內角互補平行線的判定:同位角相等,兩直線平行。
內錯角相等,兩直線平行。同旁內角互補,兩直線平行。
兩條直線a,b被第三條直線c所截(或說a,b相交c),在截線c的同旁,被截兩直線a,b的同一側的角,我們把這樣的兩個角稱為同位角。
兩條直線a,b被第三條直線c所截會出現「三線八角」,其中有4對同位角,2對內錯角,2對同旁內角。
⑷ 初中數學公理有哪些
1.兩點確定一條直線
2.兩點之間線段最短
3.同一平面內,過一點有且只有一條直線與已知直線垂直
4.同位角相等,兩直線平行.
5.過直線外一點有且只有一條直線與這條直線平行.
6.兩邊及其夾角分別相等的兩個三角形全等.
7.兩角及其夾邊分別相等的兩個三角形全等.
8.三邊分別相等的兩個三角形全等.
⑸ 初中數學公理有哪些
1.過兩點有且只有一條直線
2.兩點之間線段最短
3.同角或等角的補角相等
4.同角或等角的餘角相等
5.過一點有且只有一條直線和已知直線垂直
6.直線外一點與直線上各點連接的所有線段中,垂線段最短
7.平行公理:經過直線外一點,有且只有一條直線與這條直線平行
8.如果兩條直線都和第三條直線平行,這兩條直線也互相平行
9.同位角相等,兩直線平行
10.內錯角相等,兩直線平行
11.同旁內角互補,兩直線平行
12.兩直線平行,同位角相等
13.兩直線平行,內錯角相等
14.兩直線平行,同旁內角互補
15.定理:三角形兩邊的和大於第三邊
16.推論:三角形兩邊的差小於第三邊
17.三角形內角和定理:三角形三個內角的和等於180°
18.推論1:直角三角形的兩個銳角互余
19.推論2:三角形的一個外角等於和它不相鄰的兩個內角的和
20.推論3:三角形的一個外角大於任何一個和它不相鄰的內角
21.全等三角形的對應邊、對應角相等
22.邊角邊公理(SAS):有兩邊和它們的夾角對應相等的兩個三角形全等
23.角邊角公理(ASA):有兩角和它們的夾邊對應相等的兩個三角形全等
24.推論(AAS):有兩角和其中一角的對邊對應相等的兩個三角形全等
25.邊邊邊公理(SSS):有三邊對應相等的兩個三角形全等
26.斜邊、直角邊公理(HL):有斜邊和一條直角邊對應相等的兩個直角三角形全等
27.定理1:在角的平分線上的點到這個角的兩邊的距離相等
28.定理2:到一個角的兩邊的距離相同的點,在這個角的平分線上
29.角的平分線是到角的兩邊距離相等的所有點的集合
30.等腰三角形的性質定理 等腰三角形的兩個底角相等 (即等邊對等角)
31.推論1:等腰三角形頂角的平分線平分底邊並且垂直於底邊
32.等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合
33.推論3:等邊三角形的各角都相等,並且每一個角都等於60°
34.等腰三角形的判定定理:如果一個三角形有兩個角相等,那麼這兩個角所對的邊也相等(等角對等邊)
35.推論1:三個角都相等的三角形是等邊三角形
36.推論2:有一個角等於60°的等腰三角形是等邊三角形
37.在直角三角形中,如果一個銳角等於30°那麼它所對的直角邊等於斜邊的一半
38.直角三角形斜邊上的中線等於斜邊上的一半
39.定理:線段垂直平分線上的點和這條線段兩個端點的距離相等
40.逆定理:和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上
41.線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合
42.定理1:關於某條直線對稱的兩個圖形是全等形
43.定理2:如果兩個圖形關於某直線對稱,那麼對稱軸是對應點連線的垂直平分線
44.定理3:兩個圖形關於某直線對稱,如果它們的對應線段或延長線相交,那麼交點在對稱軸上
45.逆定理:如果兩個圖形的對應點連線被同一條直線垂直平分,那麼這兩個圖形關於這條直線對稱
46.勾股定理:直角三角形兩直角邊a、b的平方和、等於斜邊c的平方,即a^2+b^2=c^2
47.勾股定理的逆定理:如果三角形的三邊長a、b、c有關系a^2+b^2=c^2 ,那麼這個三角形是直角三角形
48.定理:四邊形的內角和等於360°
49.四邊形的外角和等於360°
50.多邊形內角和定理:n邊形的內角的和等於(n-2)×180°
51.推論:任意多邊的外角和等於360°
52.平行四邊形性質定理 1:平行四邊形的對角相等
53.平行四邊形性質定理 2:平行四邊形的對邊相等
54.推論:夾在兩條平行線間的平行線段相等
55.平行四邊形性質定理 3:平行四邊形的對角線互相平分
56.平行四邊形判定定理 1:兩組對角分別相等的四邊形是平行四邊形
57.平行四邊形判定定理 2:兩組對邊分別相等的四邊形是平行四邊形
58.平行四邊形判定定理 3:對角線互相平分的四邊形是平行四邊形
59.平行四邊形判定定理 4:一組對邊平行相等的四邊形是平行四邊形
60.矩形性質定理 1:矩形的四個角都是直角
61.矩形性質定理 2:矩形的對角線相等
62.矩形判定定理 1:有三個角是直角的四邊形是矩形
63.矩形判定定理 2:對角線相等的平行四邊形是矩形
64.菱形性質定理 1:菱形的四條邊都相等
65.菱形性質定理 2:菱形的對角線互相垂直,並且每一條對角線平分一組對角
66.菱形面積=對角線乘積的一半,即 S=(a×b)÷2
67.菱形判定定理 1:四邊都相等的四邊形是菱形
68.菱形判定定理 2:對角線互相垂直的平行四邊形是菱形
69.正方形性質定理 1:正方形的四個角都是直角,四條邊都相等
70.正方形性質定理 2:正方形的兩條對角線相等,並且互相垂直平分,每條對角線平分一組對角
71.定理1:關於中心對稱的兩個圖形是全等的
72.定理2:關於中心對稱的兩個圖形,對稱點連線都經過對稱中心,並且被對稱中心平分
73.逆定理:如果兩個圖形的對應點連線都經過某一點,並且被這一點平分,那麼這兩個圖形關於這一點對稱
74.等腰梯形性質定理:等腰梯形在同一底上的兩個角相等
75.等腰梯形的兩條對角線相等
76.等腰梯形判定定理:在同一底上的兩個角相等的梯形是等腰梯形
77.對角線相等的梯形是等腰梯形
78.平行線等分線段定理:如果一組平行線在一條直線上截得的線段相等,那麼在其他直線上截得的線段也相等
79.推論 1:經過梯形一腰的中點與底平行的直線,必平分另一腰
80.推論 2:經過三角形一邊的中點與另一邊平行的直線,必平分第三邊
81.三角形中位線定理:三角形的中位線平行於第三邊,並且等於它的一半
82.梯形中位線定理:梯形的中位線平行於兩底,並且等於兩底和的一半L=(a+b)÷2S=L×h
83. (1)比例的基本性質:如果 a:b=c:d,那麼ad=bc如果ad=bc,那麼a:b=c:d
84. (2)合比性質:如果 a/b=c/d,那麼(a±b)/b=(c±d)/d
85. (3)等比性質: 如果 a/b=c/d=…=m/n(b+d+…+n≠0),那麼(a+c+…+m)/(b+d+…+n)=a/b
86.平行線分線段成比例定理:三條平行線截兩條直線,所得的對應線段成比例
87.推論:平行於三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的應線段成比例
88.定理:如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,那麼這條直線平行於三角形的第三邊
89.平行於三角形的一邊,並且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對應成比例
90.定理:平行於三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似
91.相似三角形判定定理 1:兩角對應相等,兩三角形相似(ASA)
92.直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似
93.判定定理 2:兩邊對應成比例且夾角相等,兩三角形相似(SAS)
94.判定定理 3:三邊對應成比例,兩三角形相似(SSS)
95.定理:如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應成比例,那麼這兩個直角三角形相似
96.性質定理 1:相似三角形對應高的比,對應中線的比與對應角平分線的比都等於相似比
97.性質定理 2:相似三角形周長的比等於相似比
98.性質定理 3:相似三角形面積的比等於相似比的平方
99.任意銳角的正弦值等於它的餘角的餘弦值,任意銳角的餘弦值等於它的餘角的正弦值
100.任意銳角的正切值等於它的餘角的餘切值,任意銳角的餘切值等於它的餘角的正切值
101.圓是定點的距離等於定長的點的集合
102.圓的內部可以看作是圓心的距離小於半徑的點的集合
103.圓的外部可以看作是圓心的距離大於半徑的點的集合
104.同圓或等圓的半徑相等
105.到定點的距離等於定長的點的軌跡,是以定點為圓心,定長為半徑的圓
106.和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直平分線
107.到已知角的兩邊距離相等的點的軌跡,是這個角的平分線
108.到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距離相等的一條直線
109.定理:不在同一直線上的三點確定一個圓。
110.垂徑定理:垂直於弦的直徑平分這條弦並且平分弦所對的兩條弧
111.推論 1:①平分弦(不是直徑)的直徑垂直於弦,並且平分弦所對的兩條弧
②弦的垂直平分線經過圓心,並且平分弦所對的兩條弧
③平分弦所對的一條弧的直徑,垂直平分弦,並且平分弦所對的另一條弧
112.推論2:圓的兩條平行弦所夾的弧相等
113.圓是以圓心為對稱中心的中心對稱圖形
114.定理:在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等
115.推論:在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那麼它們所對應的其餘各組量都相等
116.定理:一條弧所對的圓周角等於它所對的圓心角的一半
117.推論 1:同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也 相等
118.推論 2:半圓(或直徑)所對的圓周角是直角;90° 的圓周角所對的弦是直徑
119.推論 3:如果三角形一邊上的中線等於這邊的一半,那麼這個三角形是直角三角形
120.定理:圓的內接四邊形的對角互補,並且任何一個外角都等於它的內對角
121.①直線L和⊙O相交 d<r
②直線L和⊙O相切 d=r
③直線L和⊙O相離 d>r
122.切線的判定定理:經過半徑的外端並且垂直於這條半徑的直線是圓的切線
123.切線的性質定理:圓的切線垂直於經過切點的半徑
124.推論 1:經過圓心且垂直於切線的直線必經過切點
125.推論 2:經過切點且垂直於切線的直線必經過圓心
126.切線長定理:從圓外一點引圓的兩條切線,它們的切線長相等,圓心和這一點的連線平分兩條切線的夾角
127.圓的外切四邊形的兩組對邊的和相等
128.弦切角定理:弦切角等於它所夾的弧對的圓周角
129.推論:如果兩個弦切角所夾的弧相等,那麼這兩個弦切角也相等
130.相交弦定理:圓內的兩條相交弦,被交點分成的兩條線段長的積相等
131.推論:如果弦與直徑垂直相交,那麼弦的一半是它分直徑所成的兩條線段的比例中項
132.切割線定理:從圓外一點引圓的切線和割線,切線長是這點到割線與圓交點的兩條線段長的比例中項
133.推論:從圓外一點引圓的兩條割線,這一點到每條割線與圓的交點的兩條線段長的積相等
134.如果兩個圓相切,那麼切點一定在連心線上
135.①兩圓外離 d>R+r
②兩圓外切 d=R+r
③兩圓相交 R-r<d<R+r(R>r)
④兩圓內切 d=R-r(R>r)
⑤兩圓內含d<R-r(R>r)
136.定理:相交兩圓的連心線垂直平分兩圓的公共弦
137.定理:把圓分成n(n≥3):
⑴依次連結各分點所得的多邊形是這個圓的內接正n邊形
⑵經過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形
138.定理:任何正多邊形都有一個外接圓和一個內切圓,這兩個圓是同心圓
139.正n邊形的每個內角都等於(n-2)×180°/n
140.定理:正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形
141.正n邊形的面積Sn=pnrn/2 p表示正n邊形的周長
142.正三角形面積 √3a/4 a表示邊長
143.如果在一個頂點周圍有k個正n邊形的角,由於這些角的和應為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4
144.弧長計算公式:
L=n兀R/180
145.扇形面積公式:
S扇形=n兀R^2/360=LR/2
146.內公切線長=d-(R-r)
外公切線長= d-(R+r)
⑹ 初中數學九條公理和基本事實是什麼
初中數學九條公理和基本事實如下:
1、過兩點有且只有一條直線。
2、兩點之間線段最短。
3、同角或等角的補角相等。
4、同角或等角的餘角相等。
5、過一點有且只有一條直線和已知直線垂直。
6、直線外一點與直線上各點連接的所有線段中,垂線段最短。
7、平行公理經過直線外一點,有且只有一條直線與這條直線平行。
8、如果兩條直線都和第三條直線平行,這兩條直線也互相平行。
9、同位角相等,兩直線平行。
初中數學學習方法
1、按部就班,環環相扣
數學是環環相扣的一門學科,哪一個環節脫節都會影響整個學習的進程。所以,平時學習不應貪快,要一章一章過關,不要輕易留下自己不明白或者理解不深刻的問題,一定要把每一個環節都學牢。
2、概念記清,基礎夯實
千萬不要忽視最基本的概念、公理、定理和公式,每新學一個定理或者定義的時候,都要在理解的基礎上去深挖每一個字眼,有時候少說一兩個字,都可能導致結果的不同。要在剛開始學概念的時候就弄清楚,通過讀一讀、抄一抄加深印象,特別是容易混淆的概念更要徹底搞清,不留隱患。
3、適當做題,巧做為主
學習數學是不能缺少訓練的,平時多做一些難度適中的練習,當然莫要陷入死鑽難題的誤區,要熟悉中考的題型,訓練要做到有的放矢。有的同學埋頭題海苦苦掙扎,輔導書做掉一大堆卻鮮有提高,這就是陷入了做題的誤區。
⑺ 初中數學八大公理是什麼
1.過兩點有且只有一條直線
2.兩點之間線段最短
3.同角或等角的補角相等
4.同角或等角的餘角相等
5.過一點有且只有一條直線和已知直線垂直
6.直線外一點與直線上各點連接的所有線段中,垂線段最短
7.平行公理:經過直線外一點,有且只有一條直線與這條直線平行
8.如果兩條直線都和第三條直線平行,這兩條直線也互相平行
9.同位角相等,兩直線平行
10.內錯角相等,兩直線平行
11.同旁內角互補,兩直線平行
12.兩直線平行,同位角相等
13.兩直線平行,內錯角相等
14.兩直線平行,同旁內角互補
15.定理:三角形兩邊的和大於第三邊
16.推論:三角形兩邊的差小於第三邊
17.三角形內角和定理:三角形三個內角的和等於180°
18.推論1:直角三角形的兩個銳角互余
19.推論2:三角形的一個外角等於和它不相鄰的兩個內角的和
20.推論3:三角形的一個外角大於任何一個和它不相鄰的內角
21.全等三角形的對應邊、對應角相等
22.邊角邊公理(SAS):有兩邊和它們的夾角對應相等的兩個三角形全等
23.角邊角公理(ASA):有兩角和它們的夾邊對應相等的兩個三角形全等
24.推論(AAS):有兩角和其中一角的對邊對應相等的兩個三角形全等
25.邊邊邊公理(SSS):有三邊對應相等的兩個三角形全等
26.斜邊、直角邊公理(HL):有斜邊和一條直角邊對應相等的兩個直角三角形全等
27.定理1:在角的平分線上的點到這個角的兩邊的距離相等
28.定理2:到一個角的兩邊的距離相同的點,在這個角的平分線上
29.角的平分線是到角的兩邊距離相等的所有點的集合
30.等腰三角形的性質定理:等腰三角形的兩個底角相等 (即等邊對等角)
31.推論1:等腰三角形頂角的平分線平分底邊並且垂直於底邊
32.等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合
33.推論3:等邊三角形的各角都相等,並且每一個角都等於60°
34.等腰三角形的判定定理:如果一個三角形有兩個角相等,那麼這兩個角所對的邊也相等(等角對等邊)
35.推論1:三個角都相等的三角形是等邊三角形
36.推論2:有一個角等於60°的等腰三角形是等邊三角形
37.在直角三角形中,如果一個銳角等於30°那麼它所對的直角邊等於斜邊的一半
38.直角三角形斜邊上的中線等於斜邊上的一半
39.定理:線段垂直平分線上的點和這條線段兩個端點的距離相等
40.逆定理:和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上
41.線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合
⑻ 初中數學九條公理和基本事實是什麼
初中數學九條公理是過兩點有且只有一條直線。兩點之間線段最短,同角或等角的補角相等,同角或等角的餘角相等,過一點有且只有一條直線和已知直線垂直,直線外一點與直線上各點連接的所有線段中垂線段最短。
初中數學九條公理的由來
平行公理經過直線外一點,有且只有一條直線與這條直線平行,如果兩條直線都和第三條直線平行,這兩條直線也互相平行,同位角相等兩直線平行,公理是依據人類理性的不證自明的基本事實,經過人類長期反復實踐的考驗,不需要再加證明的基本命題。
公理是人們在長期實踐中總結出來的基本數學知識並作為判定其它命題真假的根據,定理用推理的方法得到的真命題叫做定理,這種推理的方法也叫證明,定理是經過受邏輯限制的證明為真的陳述,定律是對客觀事實的一種表達形式,通過大量具體的客觀事實歸納而成的結論。