❶ 數學中R,Z,N,Q都代表什麼意思
R:實數集合(包括有理數和無理數);Z:整數集合{…,-1,0,1,…};N表示非負整數集;Q表示有理數集。
其他表示:
N:非負整數集合或自然數集合{0,1,2,3,…}
N*或N+:正整數集合{1,2,3,…}
Q+:正有理數集合
Q-:負有理數集合
R+:正實數集合
R-:負實數集合
C:復數集合
∅ :空集(不含有任何元素的集合)
(1)數學中的q是什麼意思6擴展閱讀:
集合,簡稱集,是數學中一個基本概念,也是集合論的主要研究對象。集合論的基本理論創立於19世紀,關於集合的最簡單的說法就是在樸素集合論(最原始的集合論)中的定義。
即集合是「確定的一堆東西」,集合里的「東西」則稱為元素。現代的集合一般被定義為:由一個或多個確定的元素所構成的整體 。
❷ 數學里Q是代表什麼
數學里的Q代表有理數集即全體有理數組成的集合。
1、所有正整數組成的集合稱為正整數集,記作N*,Z+或N+。
2、所有負整數組成的集合稱為負整數集,記作Z-。
3、全體非負整數組成的集合稱為非負整數集(或自然數集),記作N。
4、全體整數組成的集合稱為整數集,記作Z。
5、全體實數組成的集合稱為實數集,記作R。
概念
集合是指具有某種特定性質的具體的或抽象的對象匯總而成的集體。其中,構成集合的這些對象則稱為該集合的元素。
例如,全中國人的集合,它的元素就是每一個中國人。通常用大寫字母如A,B,S,T,...表示集合,而用小寫字母如a,b,x,y,...表示集合的元素。若x是集合S的元素,則稱x屬於S,記為x∈S。若y不是集合S的元素,則稱y不屬於S,記為y∉S
❸ 數學中Q代表什麼
Q可以代表未知數,也可以代表有理數,
Q也可以代表amount of regular repayment made per period
Q還可以成為角度如:sinQ
❹ 數學里的Q代表什麼數集
Q表示【有理數集 】
Q+或Q+表示正有理數集。
Q-或Q-表示負有理數集。
有理數的英文是: Rational number
['ræʃənl'nʌmbə],但不能再用R表示了。由於任何一個有理數都是兩個整數之比的結果(商),而商的英文是quotient
['kwəuʃnt],所以就用Q表示了。
❺ 數學q是什麼意思 數學q的解釋
1、Q是有理數集,但Q並不表示有理數,有理數集與有理數是兩個不同的概念。有理數集是元素為全體有理數的集合,而有理數則為有理數集中的所有元素。有理數是整數(正整數、0、負整數)和分數的統稱,是整數和分數的集合。
2、有理數命名由來
「有理數」這一名稱不免叫人費解,有理數並不比別的數更「有道理」。事實上,這似乎是一個翻譯上的失誤。有理數一詞是從西方傳來,在英語中是rational number,而rational通常的意義是「理性的」。中國在近代翻譯西方科學著作,依據日語中的翻譯方法,以訛傳訛,把它譯成了「有理數」。
但是,這個詞來源於古希臘,其英文詞根為ratio,就是比率的意思(這里的詞根是英語中的,希臘語意義與之相同)。所以這個詞的意義也很顯豁,就是整數的「比」。與之相對,「無理數」就是不能精確表示為兩個整數之比的數,而並非沒有道理。
❻ 數學里的Q代表什麼數集
數學里的Q代表有理數集合。
在數學中,常使用大寫的字母「Q」表示有理數組成的合集,這是數學中的常用規定,是為了在數學計算中方便書寫而設定的。
常用的有理數集合經常在字母前後增加「+」和「-」分別表示正有理數集合和負有理數集合。
(6)數學中的q是什麼意思6擴展閱讀:
集合的特性
1、確定性:給定一個集合,任給一個元素,該元素或者屬於或者不屬於該集合,二者必居其一,不允許有模稜兩可的情況出現 。
2、互異性:一個集合中,任何兩個元素都認為是不相同的,即每個元素只能出現一次。有時需要對同一元素出現多次的情形進行刻畫,可以使用多重集,其中的元素允許出現多次。
3、無序性:一個集合中,每個元素的地位都是相同的,元素之間是無序的。集合上可以定義序關系,定義了序關系後,元素之間就可以按照序關系排序。但就集合本身的特性而言,元素之間沒有必然的序。
❼ Q在數學上表示什麼意思
r=real 實數
z=zheng 整數
在數學集合中Q表示有理數集
❽ 數學q是什麼意思 數學符號都有哪些
數學符號的發明和使用比數字晚,但是數量多得多。初中階段經常使用的就有至少20多個。它們都有一段有趣的經歷。我整理了一些重要的數學符號。
Q表示的意義是:有理數集。
但Q並不表示有理數,有理數集與有理數是兩個不同的概念。有理數集是元素為全體有理數的集合,而有理數則為有理數集中的所有元素。
有理數為整數(正整數、0、負整數)和分數的統稱。正整數和正分數合稱為正有理數,負整數和負分數合稱為負有理數。因而有理數集的數可分為正有理數、負有理數和零。
整數的全體構成整數集,整數集是一個數環。在整數系中,零和正整數統稱為自然數。-1、-2、-3、…、-n、…(n為非零自然數)為負整數。則正整數、零與負整數構成整數系。整數不包括小數,分數。
實數集,包含所有有理數和無理數的集合,通常用大寫字母R表示。
18世紀,微積分學在實數的基礎上發展起來。但當時的實數集並沒有精確的定義。直到1871年,德國數學家康托爾第一次提出了實數的嚴格定義。任何一個非空有上界的集合(包含於R)必有上確界。
以上是我整理的一些數學符號,希望能幫到你。
❾ 數學里的Q代表什麼數集
Q表示【有理數集 】x0dx0aQ+或Q+表示正有理數集。x0dx0aQ-或Q-表示負有理數集。x0dx0a x0dx0a有理數的英文是: Rational number x0dx0a['ræʃənl'nʌmbə],但不能再用R表示了。由於任何一個有理數都是兩個整數之比的結果(商),而商的英文是quotient x0dx0a['kwəuʃnt],所以就用Q表示了。
❿ 數學中Q表示什麼。
N 自然數 Q 有理數 Z. 整數 R 實數
希望對你能有所幫助。