① 數學里的Q代表什麼數集
數學里的Q代表有理數集即全體有理數組成的集合。
集合是指具有某種特定性質的具體的或抽象的對象匯總成的集體,這些對象稱為該集合的元素,數集指就是數的集合。
數學中一些常用的數集及其記法:
1、所有正整數組成的集合稱為正整數集,記作N*,Z+或N+。
2、所有負整數組成的集合稱為負整數集,記作Z-。
3、全體非負整數組成的集合稱為非負整數集(或自然數集),記作N。
4、全體整數組成的集合稱為整數集,記作Z。
5、全體實數組成的集合稱為實數集,記作R。
6、全體虛數組成的集合稱為虛數集,記作I。
7、全體實數和虛數組成的復數的集合稱為復數集,記作C。
(1)數學里q是什麼意思6擴展閱讀
集合是指具有某種特定性質的具體的或抽象的對象匯總成的集體,這些對象稱為該集合的元素,數集就是數的集合。集合的范圍比數集的范圍大,數集只是集合中的一種而已,屬於數集的一定屬於集合,但屬於集合的不一定是數集。
集合里的運算都是在共同的全集U下進行的,包括交集、並集、補集等,點集的元素是點(x,y),對應的全集是平面直角坐標系中所有的點的集合,數集的元素是數x,對應的全集是數軸上所有的點的集合。
不是同一類的元素的不同類集合不能進行交集、並集等運算,所以不能說數集和點集的交集是空集。如果改點集中的點在數集中,那麼這就是二者的交集。
若兩個集合A和B的交集為空,則說他們沒有公共元素,寫作:A∩B
=
∅。例如集合
{1,2}
和
{3,4}
不相交,寫作
{1,2}
∩
{3,4}
=
∅。
任何集合與空集的交集都是空集,即A∩∅=∅。更一般的,交集運算可以對多個集合同時進行。例如,集合A、B、C和D的交集為A∩B∩C∩D=A∩[B∩(C
∩D)]。交集運算滿足結合律,即A∩(B∩C)=(A∩B)
∩C。
參考資料來源:網路-數集
參考資料來源:網路-集合
② 數學里的Q代表什麼數集
Q表示【有理數集 】x0dx0aQ+或Q+表示正有理數集。x0dx0aQ-或Q-表示負有理數集。x0dx0a x0dx0a有理數的英文是: Rational number x0dx0a['ræʃənl'nʌmbə],但不能再用R表示了。由於任何一個有理數都是兩個整數之比的結果(商),而商的英文是quotient x0dx0a['kwəuʃnt],所以就用Q表示了。
③ 數學里Q是代表什麼
數學里的Q代表有理數集即全體有理數組成的集合。
1、所有正整數組成的集合稱為正整數集,記作N*,Z+或N+。
2、所有負整數組成的集合稱為負整數集,記作Z-。
3、全體非負整數組成的集合稱為非負整數集(或自然數集),記作N。
4、全體整數組成的集合稱為整數集,記作Z。
5、全體實數組成的集合稱為實數集,記作R。
概念
集合是指具有某種特定性質的具體的或抽象的對象匯總而成的集體。其中,構成集合的這些對象則稱為該集合的元素。
例如,全中國人的集合,它的元素就是每一個中國人。通常用大寫字母如A,B,S,T,...表示集合,而用小寫字母如a,b,x,y,...表示集合的元素。若x是集合S的元素,則稱x屬於S,記為x∈S。若y不是集合S的元素,則稱y不屬於S,記為y∉S
④ 數學里的Q代表什麼數集
Q表示【有理數集 】
Q+或Q+表示正有理數集。
Q-或Q-表示負有理數集。
有理數的英文是: Rational number
['ræʃənl'nʌmbə],但不能再用R表示了。由於任何一個有理數都是兩個整數之比的結果(商),而商的英文是quotient
['kwəuʃnt],所以就用Q表示了。
⑤ 數學中的Z,Q,R分別代表什麼
Z表示集合中的整數集
Q表示有理數集
R表示實數集
N表示集合中的自然數集
N+表示正整數集
拓展資料:
符號法
有些集合可以用一些特殊符號表示,比如:
N:非負整數集合或自然數集合{0,1,2,3,…}
N*或N+:正整數集合{1,2,3,…}
Z:整數集合{…,-1,0,1,…}
Q:有理數集合
Q+:正有理數集合
Q-:負有理數集合
R:實數集合(包括有理數和無理數)
R+:正實數集合
R-:負實數集合
C:復數集合
∅ :空集(不含有任何元素的集合)
⑥ 數學中的Q表示什麼意思
數學中的Q表示的是:有理數集,用大寫黑正體符號Q代表。
但Q並不表示有理數,有理數集與有理數是兩個不同的概念。有理數集是元素為全體有理數的集合,而有理數則為有理數集中的所有元素。
有理數為整數(正整數、0、負整數)和分數的統稱。正整數和正分數合稱為正有理數,負整數和負分數合稱為負有理數。因而有理數集的數可分為正有理數、負有理數和零。
由於任何一個整數或分數都可以化為十進制循環小數,反之,每一個十進制循環小數也能化為整數或分數,因此,有理數也可以定義為十進制循環小數。
(6)數學里q是什麼意思6擴展閱讀
有理數運算定律
一、加法運算律:
1、加法交換律:兩個數相加,交換加數的位置,和不變,即
。
2、加法結合律:三個數相加,先把前兩個數相加或者先把後兩個數相加,和不變,即
。
二、減法運算律:
減法運算律:減去一個數,等於加上這個數的相反數。即:
。
三、乘法運算律:
1、乘法交換律:兩個數相乘,交換因數的位置,積不變,即
。
2、乘法結合律:三個數相乘,先把前兩個數先乘,或者先把後兩個相乘,積不變,即
。
3、乘法分配律:某個數與兩個數的和相乘等於把這個數分別與這兩個數相乘,再把積相加,即:
。
參考資料:搜狗網路——有理數
⑦ 數學中Q代表什麼
Q可以代表未知數,也可以代表有理數,
Q也可以代表amount of regular repayment made per period
Q還可以成為角度如:sinQ
⑧ 數學q是什麼意思 數學符號都有哪些
數學符號的發明和使用比數字晚,但是數量多得多。初中階段經常使用的就有至少20多個。它們都有一段有趣的經歷。我整理了一些重要的數學符號。
Q表示的意義是:有理數集。
但Q並不表示有理數,有理數集與有理數是兩個不同的概念。有理數集是元素為全體有理數的集合,而有理數則為有理數集中的所有元素。
有理數為整數(正整數、0、負整數)和分數的統稱。正整數和正分數合稱為正有理數,負整數和負分數合稱為負有理數。因而有理數集的數可分為正有理數、負有理數和零。
整數的全體構成整數集,整數集是一個數環。在整數系中,零和正整數統稱為自然數。-1、-2、-3、…、-n、…(n為非零自然數)為負整數。則正整數、零與負整數構成整數系。整數不包括小數,分數。
實數集,包含所有有理數和無理數的集合,通常用大寫字母R表示。
18世紀,微積分學在實數的基礎上發展起來。但當時的實數集並沒有精確的定義。直到1871年,德國數學家康托爾第一次提出了實數的嚴格定義。任何一個非空有上界的集合(包含於R)必有上確界。
以上是我整理的一些數學符號,希望能幫到你。
⑨ 數學里的Q代表什麼數集
數學里的Q代表有理數集合。
在數學中,常使用大寫的字母「Q」表示有理數組成的合集,這是數學中的常用規定,是為了在數學計算中方便書寫而設定的。
常用的有理數集合經常在字母前後增加「+」和「-」分別表示正有理數集合和負有理數集合。
(9)數學里q是什麼意思6擴展閱讀:
集合的特性
1、確定性:給定一個集合,任給一個元素,該元素或者屬於或者不屬於該集合,二者必居其一,不允許有模稜兩可的情況出現 。
2、互異性:一個集合中,任何兩個元素都認為是不相同的,即每個元素只能出現一次。有時需要對同一元素出現多次的情形進行刻畫,可以使用多重集,其中的元素允許出現多次。
3、無序性:一個集合中,每個元素的地位都是相同的,元素之間是無序的。集合上可以定義序關系,定義了序關系後,元素之間就可以按照序關系排序。但就集合本身的特性而言,元素之間沒有必然的序。
⑩ 數學中R,Z,N,Q都代表什麼意思
R:實數集合(包括有理數和無理數);Z:整數集合{…,-1,0,1,…};N表示非負整數集;Q表示有理數集。
其他表示:
N:非負整數集合或自然數集合{0,1,2,3,…}
N*或N+:正整數集合{1,2,3,…}
Q+:正有理數集合
Q-:負有理數集合
R+:正實數集合
R-:負實數集合
C:復數集合
∅ :空集(不含有任何元素的集合)
(10)數學里q是什麼意思6擴展閱讀:
集合,簡稱集,是數學中一個基本概念,也是集合論的主要研究對象。集合論的基本理論創立於19世紀,關於集合的最簡單的說法就是在樸素集合論(最原始的集合論)中的定義。
即集合是「確定的一堆東西」,集合里的「東西」則稱為元素。現代的集合一般被定義為:由一個或多個確定的元素所構成的整體 。