⑴ R是什麼集合
R不但是英文字母,也是數學符號。R是一個無限集合。
r指的是半徑,如圓形面積公式:R還代表集合實數集。R可以與其真子集建立雙射。
其他:
R+:正實數集合。
R-:負實數集合。
R表示集合理論中的實數集,而復數中的實數部分也以此符號為代表,英文是realnumber。
*表示非零。
+表示大於等於0。
-表示小於等於0。
⑵ r代表什麼數集
在數學中,R表示實數集,因實數的英文單詞為Realnumber,所以實數集合用R來表示;實數可以直觀地看作有限小數與無限小數,實數和數軸上的點一一對應,但僅僅以列舉的方式不能描述實數的整體。
1、用Q表示有理數集:
由於兩個數相比的結果(商)叫做有理數,商英文是quotient,所以有理數集就用Q表示了。
2、用Z表示整數集:
這個涉及到一個德國女數學家對環理論的貢獻,她叫諾特。1920年,她已引入「左模」、「右模」的概念、1921年寫出的是交換代數發展的里程碑,
她是德國人,德語中的整數叫做Zahlen,於是當時她將整數環記作Z,從那時候起整數集就用Z表示了。
3、用N表示自然數集:
自然數:Naturalnumber,所以自然數集就用N表示了。
4、用R表示實數集:
實數:Realnumber,所以實數集就用R表示了。
5、用C表示復數集:
復數:Complexnumber,所以復數集就用C表示了。
⑶ R是什麼數
數學上的R代表集合實數集。R+表示正實數,R-表示負實數。實數集通俗地認為,通常包含所有有理數和無理數的集合就是實數集,通常用大寫字母R表示。18世紀,微積分學在實數的基礎上發展起來。但當時的實數集並沒有精確的定義。直到1871年,德國數學家康托爾第一次提出了實數的嚴格定義。任何一個非空有上界的集合(包含於R)必有上確界。
實數集,包含所有有理數和無理數的集合,通常用大寫字母R表示。18世紀,微積分學在實數的基礎上發展起來。但當時的實數集並沒有精確的定義。直到1871年,德國數學家康托爾第一次提出了實數的嚴格定義。任何一個非空有上界的集合(包含於R)必有上確界。
加法定理:
1、對於任意屬於集合R的元素a、b,可以定義它們的加法a+b,且a+b屬於R。
2、加法有恆元0,且a+0=0+a=a(從而存在相反數)。
3、加法有交換律,a+b=b+a。
4、加法有結合律,(a+b)+c=a+(b+c)。
完備定理:
1、任何一個非空有上界的集合(包含於R)必有上確界。
2、設A、B是兩個包含於R的集合,且對任何x屬於A,y屬於B,都有x<;y,那麼必存在c屬於R,使得對任何x屬於A,y屬於B,都有x<;c<;y。
符合加法、乘法公理、完備定理以及序公理的任何一個集合都叫做實數集,實數集的元素稱為實數。
⑷ 在數學中,N、Z、Q、R 分別代表什麼呢
N全體非負整數(或自然數)組成的集合;R是實數集;Z是整數集;Q是有理數集;Z*是正整數集;N*是正整數集。
集合及運算的概念
集合:一般的,一定范圍內某些確定的,不同的對象的全體構成一個集合。
子集:對於兩個集合A和B,如果集合A中的任意一個元素都是集合B中的元素,我們就說這兩個集合有包含關系,稱集合A是集合B的子集,記作A⊆B讀作A包含於B。
空集:不含任何元素的集合叫做空集。記為Φ。
集合的三要素:確定性、互異性、無序性。
集合的表示方法:列舉法、描述法、視圖法、區間法。
集合的分類:(按集合中元素個數多少分為:)有限集、無限集、空集。
(4)數學r集合代表什麼擴展閱讀:
集合的運算性質
1、A∩B=B∩A;A∩B⊆A;A∩B⊆B;A∩U=A;A∩A=A;A∩φ=φ。
2、A∪B=BUA; A⊆A∪B; B⊆A∪B;A∪U=U;A∪A=A;A∪φ=A 。
3、Cu(CuA)=A;Cuφ=U;CuU=φ;A∩CuA=φ;A∪CuA=U (摩根定律或反演律)。
4、A⊇B,B⊇A,則A=B,A⊇B,B⊇C,則A⊇C。
常用結論
1、A⊆B<=>A∩B=A;A⊆B<=>A∪B=B; A∪B=A∩B<=>A=B。
2、CuA∩CuB=Cu(A∪B),CuA∪CuB=Cu(A∩B)——德摩根律。
⑸ 數學r是什麼集合
數學r是實數集集合,實數集是包含所有有理數和無理數的集合,通常用大寫字母R表示。實數集的公理是:設A、B是兩個包含於R的集合,且對任何x屬於A,y屬於B,都有x
⑹ 數學中R表示的是什麼
R是拉丁字母。
在【代數學】中,表示數,表示算式。
在【幾何學】中,表示點,表示圓半徑。
在【集合論】中,表示實數集合。
在【無窮級數】中,表示余項。
總之,字母不象文字,使用比較隨性。
⑺ r在數學中代表什麼數
R代表集合實數集。
實數集是包含所有有理數和無理數的集合,通常用大寫字母R表示。
R的常用子集:
1、Q。
有理數集,即由所有有理數所構成的`集合,用黑體字母Q表示。有理數集是實數集的子集。
2、N+。
正整數集就是即所有正數且是整數的數的集合,是在自然數集中排除0的集合,一直到無窮大。正整數集通常用符號N+、N*、N1、N>0表示。
3、Z。
由全體整數組成的集合叫整數集。它包括全體正整數、全體負整數和零。數學中整數集通常用Z來表示。
實數集簡介
通俗地認為,通常包含所有有理數和無理數的集合就是實數集,通常用大寫字母R表示。
18世紀,微積分學在實數的基礎上發展起來。但當時的實數集並沒有精確的定義。直到1871年,德國數學家康托爾第一次提出了實數的嚴格定義。
⑻ 數學中的r是什麼數
數學上的R代表集合實數集。R+表示正實數,R-表示負實數。
實數集通俗地認為,通常包含所有有理數和無理數的集合就是實數集,通常用大寫字母R表示。18世紀,微積分學在實數的基礎上發展起來。但當時的實數集並沒有精確的定義。
直到1871年,德國數學家康托爾第一次提出了實數的嚴格定義。任何一個非空有上界的集合(包含於R)必有上確界。
完備公理
(1)任何一個非空有上界的集合(包含於R)必有上確界。
(2)設A、B是兩個包含於R的集合,且對任何x屬於A,y屬於B,都有x<y,那麼必存在c屬於R,使得對任何x屬於A,y屬於B,都有x<c<y。
符合以上四組公理的任何一個集合都叫做實數集,實數集的元素稱為實數。