導航:首頁 > 數字科學 > 數學怎麼分解

數學怎麼分解

發布時間:2023-01-07 00:36:30

㈠ 幼兒園數學分解方法容易記得的方法

1、幼兒園中班就學習10以內的分解,您只需要找十根小木棍或者同樣的東西10個就可以了。

2、首先從2的分解開始來,拿兩個一樣的東西讓幼兒數出來東西的數量,再把東西分開放,幼兒可以很清晰直觀的看出來,2個東西是可以被分成1個和1個的,這就是2可以分解成1和1,然後反過來告訴幼兒1和1可以組成2,1+1=2。用實物擺放出來能更好的幫幼兒理解。

3、接下來就是3了,同樣的拿出3個物品,一邊放一個,剩下的放到另一邊,也能很直觀的看出一邊是一個,另外一邊是2個。於是3可以分解成1和2,1和2組成3,1+2=3。倒過來3先分解成2個,然後剩下的放另一邊就是3的第二種分解方法,3還可以分解成2和1,2和1組成3,2+1=3。

4、每個數能被分解成比他本身數目少一種,也就是說2有一種分解,3有2種分解方法,4有3種分解方法,5有4種分解方法,以此類推。接下來我們分解數字4,首先還是左邊放一個,其餘的放到右邊,不難數出右邊有3個,4可以分解成1和3就完成了,再從右邊拿走一個放到左邊,就是4的第二種分解,我們看到兩邊這時一樣多了,4可以分解成2和2,第三種便是再從右邊拿走一個再放到左邊,這時就可以看到4可以分解成3和1了。這時我們就總結出一個規律每個數字的左邊都是從1開始的,右邊是剩下的數量,然後每次都從右邊拿走一個放到左邊。

㈡ 初二數學因式分解技巧有哪些

初二數學因式分解技巧:

(一)運用公式法:

我們知道整式乘法與因式分解互為逆變形。如果把乘法公式反過來就是把多項式分解因式。於是有:

a2-b2=(a+b)(a-b)。

a2+2ab+b2=(a+b)2。

a2-2ab+b2=(a-b)2。

如果把乘法公式反過來,就可以用來把某些多項式分解因式。這種分解因式的方法叫做運用公式法。

(二)平方差公式。

平方差公式:

(1)式子:a2-b2=(a+b)(a-b)。

(2)語言:兩個數的平方差,等於這兩個數的和與這兩個數的差的積。這個公式就是平方差公式。

(三)因式分解。

1、因式分解時,各項如果有公因式應先提公因式,再進一步分解。

2、因式分解,必須進行到每一個多項式因式不能再分解為止。

注意:

①項數為三項;有兩項是兩個數的的平方和,這兩項的符號相同;有一項是這兩個數的積的兩倍。

②當多項式中有公因式時,應該先提出公因式,再用公式分解。

③完全平方公式中的a、b可表示單項式,也可以表示多項式。這里只要將多項式看成一個整體就可以了。

④分解因式,必須分解到每一個多項式因式都不能再分解為止。

㈢ 數學拆分法怎麼做

第一種:數字分解
當滑動框滑到10之後,孩子可以直觀看到,1對應9,8對應2,7對應3……以此類推,輕松掌握10以內的數字分解。
第二種:10以內的加減法
當滑動框滑到任意1個數字,比如說7,你可以告訴孩子,滑動框後面的1和6相加等於7,7減去6等於1,7減去1等於6;以此類推。

㈣ 數學分解法怎樣分解,

(1)提公因式法
①公因式:各項都含有的公共的因式叫做這個多項式各項的~.
②提公因式法:一般地,如果多項式的各項有公因式,可以把這個公因式提到括弧外面,將多項式寫成因式乘積的形式,這種分解因式的方法叫做提公因式法.
am+bm+cm=m(a+b+c)
③具體方法:當各項系數都是整數時,公因式的系數應取各項系數的最大公約數;字母取各項的相同的字母,而且各字母的指數取次數最低的.如果多項式的第一項是負的,一般要提出「-」號,使括弧內的第一項的系數是正的.
(2)運用公式法
①平方差公式:.a^2-b^2=(a+b)(a-b)
②完全平方公式:a^2±2ab+b^2=(a±b)^2
※能運用完全平方公式分解因式的多項式必須是三項式,其中有兩項能寫成兩個數(或式)的平方和的形式,另一項是這兩個數(或式)的積的2倍.
(3)分組分解法
分組分解法:把一個多項式分組後,再進行分解因式的方法.
分組分解法必須有明確目的,即分組後,可以直接提公因式或運用公式.
(4)拆項、補項法
拆項、補項法:把多項式的某一項拆開或填補上互為相反數的兩項(或幾項),使原式適合於提公因式法、運用公式法或分組分解法進行分解;要注意,必須在與原多項式相等的
原則進行變形.
※多項式因式分解的一般步驟:
①如果多項式的各項有公因式,那麼先提公因式;
②如果各項沒有公因式,那麼可嘗試運用公式、十字相乘法來分解;
③如果用上述方法不能分解,那麼可以嘗試用分組、拆項、補項法來分解;
④分解因式,必須進行到每一個多項式因式都不能再分解為止。
(5)配方法:對於那些不能利用公式法的多項式,有的可以利用將其配成一個完全平方式,然後再利用平方差公式,就能將其因式分解。
(6)換元法:有時在分解因式時,可以選擇多項式中的相同的部分換成另一個未知數,然後進行因式分解,最後再轉換回來。
(7)待定系數法:首先判斷出分解因式的形式,然後設出相應整式的字母系數,求出字母系數,從而把多項式因式分解。

㈤ 數學因式分解怎麼做

可以這樣做假如一個多項式的各項都含有公因式,那麼就可以把這個公因式提出來,從而將多項式化成兩個因式乘積的形式。分解因式x -2x -x解為x -2x -x=x(x -2x-1) 。

把一個多項式在一個范圍化為幾個整式的積的形式,這種式子變形叫做這個多項式的因式分解,也叫作把這個多項式分解因式。

學習它,既可以復習整式的四則運算,又為學習分式打好基礎;學好它,既可以培養學生的觀察、思維發展性、運算能力,又可以提高綜合分析和解決問題的能力。

㈥ 數學因式分解怎麼做

數學因式分解題做法,無非是提取公因式或湊公式。
1、公因式法,如果一個多項式的各項都含有公因式,就可以把這個公因式提出來,從而將多項式化成兩個因式乘積的形式
2、比如分解因式x^3-2x^2-x=x(x^2-2x-1)。
3、應用公式法,由於分解因式與整式乘法有著互逆的關系,把乘法公式反過來就可以用來把某些多項式分解因式。
4、比如分解因式a2+4ab+4b2,可得到結果為(a+2b)×2。

初中數學因式分解的分解步驟有什麼

把一個多項式化為幾個最簡整式的乘積的形式,這種變形叫做把這個多項式因式分解(也叫作分解因式)。下面就和我一起了解一下,供大家參考。

初中數學因式分解的分解步驟整理

①如果多項式的各項有公因式,那麼先提公因式;

②如果各項沒有公因式,那麼可嘗試運用公式、十字相乘法來分解;

③如果用上述方法不能分解,那麼可以嘗試用分組、拆項、補項法來分解

④分解因式,必須進行到每一個多項式因式都不能再分解為止。

也可以用一句話來概括:「先看有無公因式,再看能否套公式。十字相乘試一試,分組分解要相對合適。」

分解因式的技巧有什麼

①分解因式是多項式的恆等變形,要求等式左邊必須是多項式

②分解因式的結果必須是以乘積的形式表示

③每個因式必須是整式,且每個因式的次數都必須低於原來多項式的次數

④分解因式必須分解到每個多項式因式都不能再分解為止。

因式分解速記口訣

兩式平方符號異,因式分解你別怕。

兩底和乘兩底差,分解結果就是它。

兩式平方符號同,底積2倍坐中央。

因式分解能與否,符號上面有文章。

同和異差先平方,還要加上正負號。

同正則正負就負,異則需添冪符號。

初中數學因式分解常見方法

1.提公因式法:ma+mb+mc=m(a+b+c)

2.平方差公式:a^2-b^2=(a+b)(a-b)

3.運用公式法:a^2-b^2=(a+b)(a-b);a^2+2ab+b^2=(a+b)^2;a^2-2ab+b^2=(a-b)^2

4.完全平方公式:a^2+2ab+b^2=(a+b)^2;a^2-2ab+b^2=(a-b)^2

5.分組分解法:am+an+bm+bn=(am+an)+(bm+bn)=a(m+n)+b(m+n)=(m+n)×(a+b)

㈧ 數學做題如何步驟分解

數學的解題方法是隨著對數學對象的研究的深入而發展起來的。教師鑽研習題、精通解題方法,可以促進教師進一步熟練地掌握中學數學教材,練好解題的基本功,提高解題技巧,積累教學資料,提高業務水平和教學能力。

下面介紹的解題方法,都是初中數學中最常用的,有些方法也是中學教學大綱要求掌握的。

1、配方法

所謂配方,就是把一個解析式利用恆等變形的方法,把其中的某些項配成一個或幾個多項式正整數次冪的和形式。通過配方解決數學問題的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是數學中一種重要的恆等變形的方法,它的應用十分非常廣泛,在因式分解、化簡根式、解方程、證明等式和不等式、求函數的極值和解析式等方面都經常用到它。

2、因式分解法

因式分解,就是把一個多項式化成幾個整式乘積的形式。因式分解是恆等變形的基礎,它作為數學的一個有力工具、一種數學方法在代數、幾何、三角等的解題中起著重要的作用。因式分解的方法有許多,除中學課本上介紹的提取公因式法、公式法、分組分解法、十字相乘法等外,還有如利用拆項添項、求根分解、換元、待定系數等等。

3、換元法

換元法是數學中一個非常重要而且應用十分廣泛的解題方法。我們通常把未知數或變數稱為元,所謂換元法,就是在一個比較復雜的數學式子中,用新的變元去代替原式的一個部分或改造原來的式子,使它簡化,使問題易於解決。

4、判別式法與韋達定理

一元二次方程ax2+bx+c=0(a、b、c屬於R,a≠0)根的判別,△=b2-4ac,不僅用來判定根的性質,而且作為一種解題方法,在代數式變形,解方程(組),解不等式,研究函數乃至幾何、三角運算中都有非常廣泛的應用。

韋達定理除了已知一元二次方程的一個根,求另一根;已知兩個數的和與積,求這兩個數等簡單應用外,還可以求根的對稱函數,計論二次方程根的符號,解對稱方程組,以及解一些有關二次曲線的問題等,都有非常廣泛的應用。

5、待定系數法

在解數學問題時,若先判斷所求的結果具有某種確定的形式,其中含有某些待定的系數,而後根據題設條件列出關於待定系數的等式,最後解出這些待定系數的值或找到這些待定系數間的某種關系,從而解答數學問題,這種解題方法稱為待定系數法。它是中學數學中常用的方法之一。

㈨ 數學 因式分解 有多少方法

分類: 教育/科學 >> 學習幫助
問題描述:

請寫出詳細方法

解析:

1.因式分解

即和差化積,其最後結果要分解到不能再分為止。而且可以肯定一個多項式要能分解因式,則結果唯一,因為:數域F上的次數大於零的多項式f(x),如果不計零次因式的差異,那麼f(x)可以唯一的分解為以下形式:

f(x)=aP1k1(x)P2k2(x)…Piki(x)*,其中α是f(x)的最高次項的系數,P1(x),P2(x)……Pi(x)是首1互不相等的不可約多項式,並且Pi(x)(I=1,2…,t)是f(x)的Ki重因式。

(*)或叫做多項式f(x)的典型分解式。證明:可參見《高代》P52-53

初等數學中,把多項式的分解叫因式分解,其一般步驟為:一提二套三分組等

要求為:要分到不能再分為止。

2.方法介紹

2.1提公因式法:

如果多項式各項都有公共因式,則可先考慮把公因式提出來,進行因式分解,注意要每項都必須有公因式。

例15x3+10x2+5x

解析顯然每項均含有公因式5x故可考慮提取公因式5x,接下來剩下x2+2x+1仍可繼續分解。

解:原式=5x(x2+2x+1)

=5x(x+1)2

2.2公式法

即多項式如果滿足特殊公式的結構特徵,即可採用套公式法,進行多項式的因式分解,故對於一些常用的公式要求熟悉,除教材的基本公式外,數學競賽中常出現的一些基本公式現整理歸納如下:

a2-b2=(a+b)(a-b)

a2±2ab+b2=(a±b)2

a3+b3=(a+b)(a2-ab+b2)

a3-b3=(a-b)(a2+ab+b2)

a3±3a2b+3ab2±b2=(a±b)3

a2+b2+c2+2ab+2bc+2ac=(a+b+c)2

a12+a22+…+an2+2a1a2+…+2an-1an=(a1+a2+…+an)2

a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-ac-bc)

an+bn=(a+b)(an-1-an-2b+…+bn-1)(n為奇數)

說明由因式定理,即對一元多項式f(x),若f(b)=0,則一定含有一次因式x-b。可判斷當n為偶數時,當a=b,a=-b時,均有an-bn=0故an-bn中一定含有a+b,a-b因式。

例2分解因式:①64x6-y12②1+x+x2+…+x15

解析各小題均可套用公式

解①64x6-y12=(8x3-y6)(8x3+y6)

=(2x-y2)(4x2+2xy2+y4)(2x+y2)(4x2-2xy2+y4)

②1+x+x2+…+x15=

=(1+x)(1+x2)(1+x4)(1+x8)

注多項式分解時,先構造公式再分解。

2.3分組分解法

當多項式的項數較多時,可將多項式進行合理分組,達到順利分解的目的。當然可能要綜合其他分法,且分組方法也不一定唯一。

例1分解因式:x15+m12+m9+m6+m3+1

解原式=(x15+m12)+(m9+m6)+(m3+1)

=m12(m3+1)+m6(m3+1)+(m3+1)

=(m3+1)(m12+m6++1)

=(m3+1)[(m6+1)2-m6]

=(m+1)(m2-m+1)(m6+1+m3)(m6+1-m3)

例2分解因式:x4+5x3+15x-9

解析可根據系數特徵進行分組

解原式=(x4-9)+5x3+15x

=(x2+3)(x2-3)+5x(x2+3)

=(x2+3)(x2+5x-3)

2.4十字相乘法

對於形如ax2+bx+c結構特徵的二次三項式可以考慮用十字相乘法,

即x2+(b+c)x+bc=(x+b)(x+c)當x2項系數不為1時,同樣也可用十字相乘進行操作。

例3分解因式:①x2-x-6②6x2-x-12

解①1x2

1x-3

原式=(x+2)(x-3)

②2x-3

3x4

原式=(2x-3)(3x+4)

註:「ax4+bx2+c」型也可考慮此種方法。

2.5雙十字相乘法

在分解二次三項式時,十字相乘法是常用的基本方法,對於比較復雜的多項式,尤其是某些二次六項式,如4x2-4xy-3y2-4x+10y-3,也可以運用十字相乘法分解因式,其具體步驟為:

(1)用十字相乘法分解由前三次組成的二次三項式,得到一個十字相乘圖

(2)把常數項分解成兩個因式填在第二個十字的右邊且使這兩個因式在第二個十字中交叉之積的和等於原式中含y的一次項,同時還必須與第一個十字中左端的兩個因式交叉之積的和等於原式中含x的一次項

例5分解因式

①4x2-4xy-3y2-4x+10y-3②x2-3xy-10y2+x+9y-2

③ab+b2+a-b-2④6x2-7xy-3y2-xz+7yz-2z2

解①原式=(2x-3y+1)(2x+y-3)

2x-3y1

2xy-3

②原式=(x-5y+2)(x+2y-1)

x-5y2

x2y-1

③原式=(b+1)(a+b-2)

0ab1

ab-2

④原式=(2x-3y+z)(3x+y-2z)

2x-3yz

3x-y-2z

說明:③式補上oa2,可用雙十字相乘法,當然此題也可用分組分解法。

如(ab+a)+(b2-b-2)=a(b+1)+(b+1)(b-2)=(b+1)(a+b-2)

④式三個字母滿足二次六項式,把-2z2看作常數分解即可:

2.6拆法、添項法

對於一些多項式,如果不能直接因式分解時,可以將其中的某項拆成二項之差或之和。再應用分組法,公式法等進行分解因式,其中拆項、添項方法不是唯一,可解有許多不同途徑,對題目一定要具體分析,選擇簡捷的分解方法。

例6分解因式:x3+3x2-4

解析法一:可將-4拆成-1,-3即(x3-1)+(3x2-3)

法二:添x4,再減x4,.即(x4+3x2-4)+(x3-x4)

法三:添4x,再減4x即,(x3+3x2-4x)+(4x-4)

法四:把3x2拆成4x2-x2,即(x3-x2)+(4x2-4)

法五:把x3拆為,4x2-3x3即(4x3-4)-(3x3-3x2)等

解(選擇法四)原式=x3-x2+4x2-4

=x2(x-1)+4(x-1)(x+1)

=(x-1)(x2+4x+4)

=(x-1)(x+2)2

2.7換元法

換元法就是引入新的字母變數,將原式中的字母變數換掉化簡式子。運用此

種方法對於某些特殊的多項式因式分解可以起到簡化的效果。

例7分解因式:

(x+1)(x+2)(x+3)(x+4)-120

解析若將此展開,將十分繁瑣,但我們注意到

(x+1)(x+4)=x2+5x+4

(x+2)(x+3)=x2+5x+6

故可用換元法分解此題

解原式=(x2+5x+4)(x2+5x+6)-120

令y=x2+5x+5則原式=(y-1)(y+1)-120

=y2-121

=(y+11)(y-11)

=(x2+5x+16)(x2+5x-6)

=(x+6)(x-1)(x2+5x+16)

注在此也可令x2+5x+4=y或x2+5x+6=y或x2+5x=y請認真比較體會哪種換法更簡單?

2.8待定系數法

待定系數法是解決代數式恆等變形中的重要方法,如果能確定代數式變形後的字母框架,只是字母的系數高不能確定,則可先用未知數表示字母系數,然後根據多項式的恆等性質列出n個含有特殊確定系數的方程(組),解出這個方程(組)求出待定系數。待定系數法應用廣泛,在此只研究它的因式分解中的一些應用。

例7分解因式:2a2+3ab-9b2+14a+3b+20

分析屬於二次六項式,也可考慮用雙十字相乘法,在此我們用待定系數法

先分解2a2+3ab+9b2=(2a-3b)(a+3b)

解設可設原式=(2a-3b+m)(a+3b+n)

=2a2+3ab-9b2+(m+2n)a+(3m-3n)b+mn……………

比較兩個多項式(即原式與*式)的系數

m+2n=14(1)m=4

3m-3n=-3(2)=>

mn=20(3)n=5

∴原式=(2x-3b+4)(a+3b+5)

注對於(*)式因為對a,b取任何值等式都成立,也可用令特殊值法,求m,n

令a=1,b=0,m+2n=14m=4

=>

令a=0,b=1,m=n=-1n=5

2.9因式定理、綜合除法分解因式

對於整系數一元多項式f(x)=anxn+an-1xn-1+…+a1x+a0

由因式定理可先判斷它是否含有一次因式(x-)(其中p,q互質),p為首項系數an的約數,q為末項系數a0的約數

若f()=0,則一定會有(x-)再用綜合除法,將多項式分解

例8分解因式x3-4x2+6x-4

解這是一個整系數一元多項式,因為4的正約數為1、2、4

∴可能出現的因式為x±1,x±2,x±4,

∵f(1)≠0,f(1)≠0

但f(2)=0,故(x-2)是這個多項式的因式,再用綜合除法

21-46-4

2-44

1-220

所以原式=(x-2)(x2-2x+2)

當然此題也可拆項分解,如x3-4x2+4x+2x-4

=x(x-2)2+(x-2)

=(x-2)(x2-2x+2)

分解因式的方法是多樣的,且其方法之間相互聯系,一道題很可能要同時運用多種方法才可能完成,故在知曉這些方法之後,一定要注意各種方法靈活運用,牢固掌握!

閱讀全文

與數學怎麼分解相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:705
乙酸乙酯化學式怎麼算 瀏覽:1372
沈陽初中的數學是什麼版本的 瀏覽:1318
華為手機家人共享如何查看地理位置 瀏覽:1011
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:849
數學c什麼意思是什麼意思是什麼 瀏覽:1371
中考初中地理如何補 瀏覽:1260
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:672
數學奧數卡怎麼辦 瀏覽:1351
如何回答地理是什麼 瀏覽:989
win7如何刪除電腦文件瀏覽歷史 瀏覽:1023
大學物理實驗干什麼用的到 瀏覽:1449
二年級上冊數學框框怎麼填 瀏覽:1659
西安瑞禧生物科技有限公司怎麼樣 瀏覽:836
武大的分析化學怎麼樣 瀏覽:1213
ige電化學發光偏高怎麼辦 瀏覽:1301
學而思初中英語和語文怎麼樣 瀏覽:1608
下列哪個水飛薊素化學結構 瀏覽:1388
化學理學哪些專業好 瀏覽:1453
數學中的棱的意思是什麼 瀏覽:1017