㈠ 在學習高中數學的時候,如何才能快速學懂知識點
進入高中,很多學生都陷入一種困惑,明明聽得很明白,可一做題就懵了,苦思冥想做出來的還是錯的。隨著時間的推移,學習的興趣也就慢慢的麽沒了。出現這種情況,大家應該從這幾個方面著手。
其實我在高一高二的數學成績並不是很好,就是將將能跟上。到高三總復習開始,我還是挺懵的,老師一篇篇的卷子發下來迎接不暇。後來我感覺這樣也不是個事啊,就決定按自己的方式來復習。高中數學學習最重要的是講究方法而不是刻苦,我的方法是首先通讀教材,把教材內所有的例題、課後習題全都做了一遍,這樣基礎知識就非常牢固了,然後就要提高了。大家知道高中數學有很多的定理、公式等需要記憶,但是單純靠背下來是不頂用的,必須會靈活運用,下面就是我的學習絕技了。
3.課內重視聽講,課後及時復習。學習最有效率的時間段就是課堂。在老師的帶領下,排疑解難,把握重點,尤其是預習過程中不會的知識,一定要豎著耳朵好好聽。聽課的時候,把老師補充的記到書上,不要凡是老師板書的都記,那樣面面俱到,就沒有時間聽課了。課後一定要先去復習,鞏固老師所講的。然後再去做題。
4.做題之後要加強反思,整理好錯題本。在做完題之後,一定要總結此題考察的知識點,用到的解題方法,還有哪些題可以用這種方法。對於典型的題,反復做錯的題,要整理到一個本上,名為錯題本。一定要仔細分析錯誤的原因在哪裡,是知識點理解不透徹,還是方法不熟練。同時可以再找幾道相識的類型再練練。
㈡ 如何掌握考研數學知識點
高等數學是考研數學的重中之重,所佔的比重較大,在數學一、三中佔56%,數學二中佔78%,重點難點較多。具體說來,大家需要重點掌握的知識點有幾以下幾點:
1.函數、極限與連續:主要考查極限的計算或已知極限確定原式中的常數;討論函數連續性和判斷間斷點類型;無窮小階的比較;討論連續函數在給定區間上零點的個數或確定方程在給定區間上有無實根。
2.一元函數微分學:主要考查導數與微分的定義;各種函數導數與微分的計算;利用洛比達法則求不定式極限;函數極值;方程的的個數;證明函數不等式;與中值定理相關的證明;最大值、最小值在物理、經濟等方面實際應用;用導數研究函數性態和描繪函數圖形;求曲線漸近線。
3.一元函數積分學:主要考查不定積分、定積分及廣義積分的計算;變上限積分的求導、極限等;積分中值定理和積分性質的證明;定積分的應用,如計算旋轉面面積、旋轉體體積、變力作功等。
4.多元函數微分學:主要考查偏導數存在、可微、連續的判斷;多元函數和隱函數的一階、二階偏導數;多元函數極值或條件極值在與經濟上的應用;二元連續函數在有界平面區域上的最大值和最小值。此外,數學一還要求會計算方向導數、梯度、曲線的切線與法平面、曲面的切平面與法線。
5.多元函數的積分學:包括二重積分在各種坐標下的計算,累次積分交換次序。數一還要求掌握三重積分,曲線積分和曲面積分以及相關的重要公式。
㈢ 初中數學學好要掌握哪些基礎知識點
初中數學學的基本內容涉到五個學習大類。分別是「數與運算」,「方程與代數」,「圖形與幾何」,「函數與分析」,「數據處理與概率統計」
一、數與運算系列內容
建立從自然數、有理數到實數的數系基本結構。內容要求包括:引進無理數,形成實數概念;建立數系結構,主要是順序結構(大小比較)和運算結構(基本運演算法則、性質、順序)。
二、方程與代數系類內容
以方程研究為中心,構建初等代數的基礎。內容要求包括:代數式是根基,方程為中心,不等式講初步;突出數學思想方法,如化歸思想以及換元、消元、配方、降次等方法。
在整體安排上,一是提供如數系通性、等式性質等基本依據,如代數式及其運算等變形基礎;二是系統研究基本的初等代數方程,形成關於初等代數方程的基本理論(主要指各類代數方程的基本解法以及解的存在性、個數、分布,還有方程的通解等)。
三、圖形與幾何系列內容
以研究圖形性質為載體,形成初等幾何的基礎。內容要求包括:體現經驗幾何是起點,注重直觀感知;實驗幾何是基礎,注重合情推理如類比、歸納以及操作說理;論證幾何是重點,注重演繹推理。
著重研究基本圖形,如簡單的直線型,圓;重視研究方法的運用,如直觀經驗、操作實驗、演繹推理、定量分析、特殊與一般的相互轉換、逆向思考等。
四、函數與分析系列內容
以形成函數概念和直觀研究簡單初等函數為基本任務,進行數學分析的奠基。
內容要求包括:從具體到抽象建立函數概念,利用圖像直觀認識函數性質,進入分析初步;在一次函數、二次函數和反比例函數等基本函數研究中,展示初等的分析方法。
五、數據處理與概率統計系列內容
以體驗概率與統計的基本思想方法為重點,引進概率與統計的初步知識。內容要求包括:完善數據處理的基本方法,建立初步的概率與統計知識基礎;解釋和解決現實生活中一些簡單的概率統計問題。
㈣ 數學知識點有哪些
數學知識點如下:
1、集合的表示方法:常用的有列舉法和描述法。
2、因數與倍數:因數和倍數的定義在五年級的時候是一個重點知識,主要知識點有大數能夠被小數整除的時候,大數是小數的倍數,而小數則是大數的一個因數。
3、長方體的定義,是由六個長方形圍成的立體圖形叫做長方體,長方體的特點是有6個面,8個頂點以及12條棱,並且想對面是完全相同的,而且相對的棱長度是相等的。
4、互異性:集合中任意兩個元素都是不同的對象。如寫成{1,1,2},等同於{1,2}。互異性使集合中的元素是沒有重復,兩個相同的對象在同一個集合中時,只能算作這個集合的一個元素。
5、維恩圖可以表示成一些集合,比如補集((b)),交集(A∪B),並集(A∩B)等等。
㈤ 高中數學知識點有哪些
01㈥ 數學知識點總結
數學集合知識點總結
集合是高中數學中的一個重要考點,相關的知識掌握並不是十分的難,下面是我想跟大家分享的數學集合知識點總結,歡迎大家瀏覽。
一、知識歸納:
1、集合的有關概念。
1)集合(集):某些指定的對象集在一起就成為一個集合(集)、其中每一個對象叫元素
注意:
①集合與集合的元素是兩個不同的概念,教科書中是通過描述給出的,這與平面幾何中的點與直線的概念類似。
②集合中的元素具有確定性(a?A和a?A,二者必居其一)、互異性(若a?A,b?A,則a≠b)和無序性({a,b}與{b,a}表示同一個集合)。
③集合具有兩方面的意義,即:凡是符合條件的對象都是它的元素;只要是它的元素就必須符號條件
2)集合的表示方法:常用的有列舉法、描述法和圖文法
3)集合的分類:有限集,無限集,空集。
4)常用數集:N,Z,Q,R,N*
2、子集、交集、並集、補集、空集、全集等概念。
1)子集:若對x∈A都有x∈B,則A B(或A B);
2)真子集:A B且存在x0∈B但x0 A;記為A B(或 ,且 )
3)交集:A∩B={x| x∈A且x∈B}
4)並集:A∪B={x| x∈A或x∈B}
5)補集:CUA={x| x A但x∈U}
注意:
①? A,若A≠?,則? A ;
②若 , ,則 ;
③若 且 ,則A=B(等集)
3、弄清集合與元素、集合與集合的關系,掌握有關的術語和符號,特別要注意以下的符號:
(1) 與 、?的區別;
(2) 與 的區別;
(3) 與 的區別。
4、有關子集的幾個等價關系
①A∩B=A A B;②A∪B=B A B;③A B C uA C uB;
④A∩CuB = 空集 CuA B;⑤CuA∪B=I A B。
5、交、並集運算的性質
①A∩A=A,A∩? = ?,A∩B=B∩A;②A∪A=A,A∪? =A,A∪B=B∪A;
③Cu (A∪B)= CuA∩CuB,Cu (A∩B)= CuA∪CuB;
6、有限子集的個數:設集合A的元素個數是n,則A有2n個子集,2n—1個非空子集,2n—2個非空真子集。
二、例題講解:
【例1】已知集合M={x|x=m+ ,m∈Z},N={x|x= ,n∈Z},P={x|x= ,p∈Z},則M,N,P滿足關系
A) M=N P B) M N=P C) M N P D) N P M
分析一:從判斷元素的共性與區別入手。
解答一:對於集合M:{x|x= ,m∈Z};對於集合N:{x|x= ,n∈Z}
對於集合P:{x|x= ,p∈Z},由於3(n—1)+1和3p+1都表示被3除餘1的數,而6m+1表示被6除餘1的數,所以M N=P,故選B。
分析二:簡單列舉集合中的元素。
解答二:M={…, ,…},N={…, , , ,…},P={…, , ,…},這時不要急於判斷三個集合間的關系,應分析各集合中不同的元素。
= ∈N, ∈N,∴M N,又 = M,∴M N,
= P,∴N P 又 ∈N,∴P N,故P=N,所以選B。
點評:由於思路二隻是停留在最初的歸納假設,沒有從理論上解決問題,因此提倡思路一,但思路二易人手。
變式:設集合 , ,則( B )
A、M=N B、M N C、N M
解:
當 時,2k+1是奇數,k+2是整數,選B
【例2】定義集合A*B={x|x∈A且x B},若A={1,3,5,7},B={2,3,5},則A*B的子集個數為
A)1 B)2 C)3 D)4
分析:確定集合A*B子集的個數,首先要確定元素的個數,然後再利用公式:集合A={a1,a2,…,an}有子集2n個來求解。
解答:∵A*B={x|x∈A且x B}, ∴A*B={1,7},有兩個元素,故A*B的子集共有22個。選D。
變式1:已知非空集合M {1,2,3,4,5},且若a∈M,則6?a∈M,那麼集合M的個數為
A)5個 B)6個 C)7個 D)8個
變式2:已知{a,b} A {a,b,c,d,e},求集合A。
解:由已知,集合中必須含有元素a,b。
集合A可能是{a,b},{a,b,c},{a,b,d},{a,b,e},{a,b,c,d},{a,b,c,e},{a,b,d,e}。
評析 本題集合A的個數實為集合{c,d,e}的真子集的個數,所以共有 個 。
【例3】已知集合A={x|x2+px+q=0},B={x|x2?4x+r=0},且A∩B={1},A∪B={?2,1,3},求實數p,q,r的值。
解答:∵A∩B={1} ∴1∈B ∴12?4×1+r=0,r=3。
∴B={x|x2?4x+r=0}={1,3}, ∵A∪B={?2,1,3},?2 B, ∴?2∈A
∵A∩B={1} ∴1∈A ∴方程x2+px+q=0的兩根為—2和1,
∴ ∴
變式:已知集合A={x|x2+bx+c=0},B={x|x2+mx+6=0},且A∩B={2},A∪B=B,求實數b,c,m的值。
解:∵A∩B={2} ∴1∈B ∴22+m?2+6=0,m=—5
∴B={x|x2—5x+6=0}={2,3} ∵A∪B=B ∴
又 ∵A∩B={2} ∴A={2} ∴b=—(2+2)=4,c=2×2=4
∴b=—4,c=4,m=—5
【例4】已知集合A={x|(x—1)(x+1)(x+2)>0},集合B滿足:A∪B={x|x>—2},且A∩B={x|1
分析:先化簡集合A,然後由A∪B和A∩B分別確定數軸上哪些元素屬於B,哪些元素不屬於B。
解答:A={x|—21}。由A∩B={x|1—2}可知[—1,1] B,而(—∞,—2)∩B=ф。
綜合以上各式有B={x|—1≤x≤5}
變式1:若A={x|x3+2x2—8x>0},B={x|x2+ax+b≤0},已知A∪B={x|x>—4},A∩B=Φ,求a,b。(答案:a=—2,b=0)
點評:在解有關不等式解集一類集合問題,應注意用數形結合的方法,作出數軸來解之。
變式2:設M={x|x2—2x—3=0},N={x|ax—1=0},若M∩N=N,求所有滿足條件的a的集合。
解答:M={—1,3} , ∵M∩N=N, ∴N M
①當 時,ax—1=0無解,∴a=0 ②
綜①②得:所求集合為{—1,0, }
【例5】已知集合 ,函數y=log2(ax2—2x+2)的定義域為Q,若P∩Q≠Φ,求實數a的取值范圍。
分析:先將原問題轉化為不等式ax2—2x+2>0在 有解,再利用參數分離求解。
解答:(1)若 , 在 內有有解
令 當 時,
所以a>—4,所以a的取值范圍是
變式:若關於x的方程 有實根,求實數a的取值范圍。
解答:
點評:解決含參數問題的題目,一般要進行分類討論,但並不是所有的問題都要討論,怎樣可以避免討論是我們思考此類問題的關鍵。
一、集合與函數概念
1、集合的含義:某些指定的對象集在一起就成為一個集合,其中每一個對象叫元素。
2、集合的中元素的三個特性:元素的確定性;元素的互異性;元素的無序性。
集合的元素通常用小寫的拉丁字母表示,如:a是集合A的元素,就說a屬於集合A記作a∈A,相反,a不屬於集合A
列舉法:把集合中的元素一一列舉出來,然後用一個大括弧括上。
描述法:將集合中的元素的公共屬性描述出來,寫在大括弧內表示集合的方法。用確定的條件表示某些對象是否屬於這個集合的方法。
①語言描述法:例:{不是直角三角形的三角形}
②數學式子描述法
二、函數的有關概念
1、函數的概念:設A、B是非空的數集,如果按照某個確定的對應關系f,使對於集合A中的任意一個數x,在集合B中都有唯一確定的數f(x)和它對應,那麼就稱f:A→B為從集合A到集合B的一個函數。記作:y=f(x),x∈A。其中,x叫做自變數,x的取值范圍A叫做函數的定義域;與x的值相對應的y值叫做函數值,函數值的集合{f(x)| x∈A }叫做函數的.值域。
一般地,設A、B是兩個非空的集合,如果按某一個確定的對應法則f,使對於集合A中的任意一個元素x,在集合B中都有唯一確定的元素y與之對應,那麼就稱對應f:A B為從集合A到集合B的一個映射。記作「f:A B」
給定一個集合A到B的映射,如果a∈A,b∈B。且元素a和元素b對應,那麼,我們把元素b叫做元素a的象,元素a叫做元素b的原象
說明:函數是一種特殊的映射,映射是一種特殊的對應,
①集合A、B及對應法則f是確定的;
②對應法則有「方向性」,即強調從集合A到集合B的對應,它與從B到A的對應關系一般是不同的;
③對於映射f:A→B來說,則應滿足:
(Ⅰ)集合A中的每一個元素,在集合B中都有象,並且象是唯一的;
(Ⅱ)集合A中不同的元素,在集合B中對應的象可以是同一個;
(Ⅲ)不要求集合B中的每一個元素在集合A中都有原象。
拓展閱讀:學習數學的方法
第一、興趣。
如今的家庭和學校對孩子的期望很高,而且女生的性格普遍較為文靜,心理不夠強大,還有的就是數學這科目難度相對來說較高,很容易會導致女生對數學的興趣降低。
所以說,作為老師應該多關心她們的學習情況,多與她們交流科目上的內容,了解她們的想法,只有理解她們的想法才能有效的制定相應的學習計劃,為她們驅除緊張的情緒,從而達到一個好的學習狀態。與此同時,作為家長的應該多關心孩子的情況,不要一看到成績不好就開口訓斥,這樣對孩子的心理會造成一定的影響,甚至可能削弱孩子對數學的興趣。我們應該用積極的態度去對待孩子的學習,女生的情感與男生不同,她們對於感興趣的,一般會更有耐心克服困難,達到自己的目標。
第二、自信。
女生的形象思維能力一般比男生要差,邏輯思維能力也如此,所以容易造成沒有信心的現象。事實上,女生在運算準確率方面是很高的,也比較規范,所以我們看到女生的數學答題大都很工整,其實這是一個優點。
所謂每個人都有優缺點,我們不應該因為自己的缺點而妄自菲薄,而是應該努力克服缺點,增強自己的自信心,在學習上應該多了解通解通法,還有一些常用的數學公式,解題技巧,還有解題速度。很多女生解數學題的速度都不快,甚至有些女生到時間了還有幾道大題沒做,這樣丟分是讓人很遺憾的。
第三、學習方法。
很多女生在學習數學的時候喜歡按部就班,注重基礎,但是卻很少做難題,所以便導致了解題能力薄弱。女生上課的時候很認真,復習的時候喜歡看筆記和書本,但是卻忽視了對自己能力的訓練,所以導致了自己適應性比較差。
所以,女生應該從這幾點下手,多下功夫,對於難題我們不要害怕,但是也不能一味地做難題,適當的訓練,對於自己的數學能力是有很大提升的。還有,女生在學習數學的時候應該多向男生學習,學習他們的一些優秀技巧,進而轉化為自己的學習技巧,結合在做題上,多訓練,相信對自己的數學水平是有很大幫助的。
第四、課前預習。
正所謂「笨鳥先飛」,我們經過預習可以提前對新內容有一個大概的了解,從而在聽課的時候能夠有的放矢,對自己不了解的知識點著重注意,很可能會有奇效。而提前預習,還能對女生的心理有一個暗示,對女生的信心提高也是有極大的好處。
;㈦ 小學數學要掌握哪些知識點
小學數學知識點:一是計算,包括加減乘除四則運算,其中有整數和小數以及分數的計算,這是數學的基礎。二是,加減乘除的應用題。三,關於數的認識,大數,分數的讀寫以及數位順序。四,關於長度,重量,時間的單位及應用。五,圖形的認識,周長,面積以及圖形的運動位置。六,初步的方程概念。
㈧ 如何快速掌握數學的知識
數學的基礎知識,讓你的知識有自我修復的能力。掌握基礎知識,把知識相互之間建立聯系。數學的基礎知識分成兩類:一類是要求強行記憶,沒有必要了解這個知識是怎麼推導來的,只需要熟記於心就可以了,例如:正弦定理,餘弦定理,這類的數學知識在中學階段非常少。一類是要求在理解中記憶,甚至理解的成分要高於記憶的成分。知識點與知識點之間是相互依存的關系而存在的,遺忘了任何一個知識點,可以通過知識網路中其他的知識點推導出來。在平時的學習過程中,要不斷的思考這樣的問題:這個知識點我忘記了,通過什麼樣的方式可以再想起來,通過什麼樣的方式可以推導出來,這個知識點和上節課學的知識點有什麼樣的聯系,日積月累下來之後,所學的知識相互之間會在邏輯上相互支撐,即使忘記一小部分,可以通過周圍的知識再回憶出來,讓自己所學的知識有自我修復的能力。我有近十年的時間沒有學習物理和化學,如果有學生問物理化學等學科的問題,即使一時間難以想起來怎麼解答,把學生的教科書拿來看一下附近的知識點,或者讓學生解釋下題目中出現相關的知識點,我就可以根據得到的僅有的知識點推導出成片的知識點,這樣題目就很容易的解答出來。數學語言的基本特徵是准確、精煉、嚴密。特別是字母表示數的應用和數學符號的變化,是數學語言本質區別於生活用語,具有更加簡明化、抽象化的特徵。例如圓的定義:到定點的距離等於定長的點的集合。不是所有的數學知識都是可以用自己的語言來進行描述,要記憶並理解教科書中的相關定義、概念、公式,在背誦和記憶的時候,一個字都不能差,這是數學知識的嚴謹性。數學的教科書,在於幫助我們建立數學的基礎知識網路和簡單的知識運用,讓知識形成網路之後,能幫助你以一個全局的觀念來看待每一個單元的每一個知識點。所以,在數學課堂中把應該記住的要點記住之後,下了數學課之後,課本再也沒有用處。只有脫離了課本,脫離了基礎知識的記憶,才能開始培養數學的解題能力。
㈨ 數學知識的整理方法有哪些
對於密密麻麻的各種知識點,很多同學看一眼就覺得壓力山大,更不要提要全部記住了。今天我給大家說一說如何歸納總結數學知識點,讓你記憶起來更輕松。
一、畫知識框架圖
把所有的知識點按照總分的方式畫框架圖,通過框架圖知道大綱和相應知識點具體內容,熟悉知識點脈絡,由抽象到具體的去理解去記憶,更容易記得准確記得時間久!
二、列知識點表格
把所有知識點通過表格的形式呈現,一目瞭然,對應的點很容易看到對應的內容,不同的知識點內容分成不同的體系,用不同顏色標注,看起來方便,記憶起來也更形象!
學會歸納總結,學會分類整理,讓你學習起來更輕松,記憶更快更准確!