① 數學中e的值是多少
e = 2.71828183
自然常數,是數學中一個常數,是一個無限不循環小數,且為超越數,約為2.71828,就是公式為 Iim (1+1/ x ) x , x →< X >或 Iim (1+z)1/ z , z →0,是一個無限不循環小數,是為超越數。
e,作為數學常數,是自然對數函數的底數。有時稱它為歐拉數,以瑞士數學家歐拉命名;也有個較鮮見的名字納皮爾常數,以紀念蘇格蘭數學家約翰·納皮爾引進對數。它就像圓周率π和虛數單位i,e是數學中最重要的常數之一。
(1)數學中是多少擴展閱讀:
e的由來:一個最直觀的方法是引入一個經濟學名稱「復利」。復利率法,是一種計算利息的方法。按照這種方法,利息除了會根據本金計算外,新得到的利息同樣可以生息,因此俗稱「利滾利」、「驢打滾」或「利疊利」。
只要計算利息的周期越密,財富增長越快,而隨著年期越長,復利效應亦會越為明顯。在引入「復利模型」之前,先試著看看更基本的 「指數增長模型」。大部分細菌是通過二分裂進行繁殖的,假設某種細菌1天會分裂一次,也就是一個增長周期為1天,這意味著:每一天,細菌的總數量都是前一天的兩倍。
如果經過x天(或者說,經過x個增長周期)的分裂,就相當於翻了x倍。在第x天時,細菌總數將是初始數量的2x倍。如果細菌的初始數量為1,那麼x天後的細菌數量即為2x。
上式含義是:第x天時,細菌總數量是細菌初始數量的Q倍。如果將 「分裂」或「翻倍」換一種更文藝的說法,也可以說是:「增長率為100%」。這個公式的數學內涵是:一個增長周期內的增長率為r,在增長了x個周期之後,總數量將為初始數量的Q倍。
② 數學中總共有多少種數
無窮多種:復數、超越數……中學就你說的那些就夠了。
祖先認為數數太累,於是發明了加法,有加法就要有減法;可是通過減法發現自然數不夠用、於是有了負數,還把正數負數統稱為整數;
後來覺的加法太累,於是發明了乘法,有乘法就要有除法,可是通過除法發現整數不夠用、於是發明了分數(小數),還把整數分數統稱為有理數;
後來覺的乘法太累了,於是發明了乘方,有乘方就要有開方,可是通過開方發現有理數不夠用、於是發明了無理數,還把有理數無理數統稱為實數;又發現負數也要開方、實數不夠用了,就發明了虛數,並把實數虛數統稱為復數。
後來覺的乘方太累了,於是……有了指數對數超越數……
……
同理可知,每多n級運算,數就會增加2^(n-1)種數,因此數有無窮多種
③ 小學數學中的大約等於多少是怎麼定義的
大約等於多少一般是指接近某個整十,整百數。
近似數的混合運算,可按運算順序和近似數的計演算法則分步計算,但中間運算的結果要比最後結果多取一位數字。
例: 計算3.054×2.5-57.85÷9.21。
3.054×2.5-57.85÷9.21
≈3.05×2.5-57.85÷9.21
≈7.63-6.28≈1.4
根據已知數據,最後運算的結果要取兩位數字,因此,中間運算的結果要取三位數字。
(3)數學中是多少擴展閱讀
一、有效數字注意:
①近似數的精確度有兩種形式:精確到哪一位;保留幾個有效數字;
②對於絕對值較大的數取近似值時,結果一般用科學計數法來表示,如:8 90 000(保留三個有效數字)的近似值,得8 903 000≈8.90×106。
③對帶有計數單位的近似數,如2.3萬,他有兩個有效數字:2、3,而不是五個有效數字。
二、有效數字的舍入規則:
1、當保留n位有效數字,若後面的數字小於第n位單位數字的0.5就舍掉。
2、當保留n位有效數字,若後面的數字大於第n位單位數字的0.5 ,則第位數字進1。
3、當保留n位有效數字,若後面的數字恰為第n位單位數字的0.5 ,則第n位數字若為偶數時就舍掉後面的數字,若第n位數字為奇數加1。
如將下組數據保留三位
45.77=45.8 43.03=43.0
38.25=38.2 47.15=47.2
④ 3!等於多少數學中
在數學中,「!」這個符號表示階乘
意思是n!=n(n-1)(n-2)……3X2X1
3!=3X2X1=6
⑤ 數學中的e等於多少
e = 2.71828183
自然常數,是數學中一個常數,是一個無限不循環小數,且為超越數,約為2.71828,就是公式為 Iim (1+1/ x ) x , x →< X >或 Iim (1+z)1/ z , z →0,是一個無限不循環小數,是為超越數。
在1690年,萊布尼茨在信中第一次提到常數e。在論文中第一次提到常數e,是約翰·納皮爾於1618年出版的對數著作附錄中的一張表。但它沒有記錄這常數,只有由它為底計算出的一張自然對數列表,通常認為是由威廉·奧特雷德製作。第一次把e看為常數的是雅各·伯努利。歐拉也聽說了這一常數,所以在27歲時,用發表論文的方式將e「保送」到微積分。
已知的第一次用到常數e,是萊布尼茨於1690年和1691年給惠更斯的通信,以b表示。1727年歐拉開始用e來表示這常數;而e第一次在出版物用到,是1736年歐拉的《力學》。雖然以後也有研究者用字母c表示,但e較常用,終於成為標准。
用e表示的確實原因不明,但可能因為e是「指數」一字的首字母。另一看法則稱a,b,c和d有其他經常用途,e則是第一個可用字母。還有一種可能是,字母「e」是指歐拉的名字「Euler」的首字母。
⑥ 數學中的i等於多少
在數學里,將偶指數冪是負數的數定義為純虛數。定義為i²=-1。所有的虛數都是復數。但是虛數是沒有算術根這一說的,所以±√(-1)=±i。對於z=a+bi,也可以表示為e的iA次方的形式,其中e是常數,i為虛數單位,A為虛數的幅角,即可表示為z=cosA+isinA。實數和虛數組成的一對數在復數范圍內看成一個數,起名為復數。虛數沒有正負可言。不是實數的復數,即使是純虛數,也不能比較大小。
虛數就是其平方是負數的數。虛數這個名詞是17世紀著名數學家笛卡爾創立,因為當時的觀念認為這是真實不存在的數字。後來發現虛數可對應平面上的縱軸,與對應平面上橫軸的實數同樣真實。
參考鏈接:
虛數_網路
http://ke..com/link?url=vNq1sAIfRvmOwZZq
⑦ 數學中3i等於多少
數學中3i等於3i,i是表示虛數。
在數學中,虛數就是形如a+b*i的數,其中a,b是實數,且b≠0,i = - 1。後來發現虛數a+b*i的實部a可對應平面上的橫軸,虛部b與對應平面上的縱軸,這樣虛數a+b*i可與平面內的點(a,b)對應。
可以將虛數bi添加到實數a以形成形式a + bi的復數,其中實數a和b分別被稱為復數的實部和虛部。一些作者使用術語純虛數來表示所謂的虛數,虛數表示具有非零虛部的任何復數。
簡介
虛數闖進數的領域時,人們對它的實際用處一無所知,在實際生活中似乎沒有用復數來表達的量,因此在很長一段時間里,人們對它產生過種種懷疑和誤解。笛卡爾稱「虛數」的本意就是指它是虛假的;萊布尼茲則認為:「虛數是美妙而奇異的神靈隱蔽所,它幾乎是既存在又不存在的兩棲物。」
歐拉盡管在許多地方用了虛數,但又說:「一切形如,√-1,√-2的數學式子都是不可能有的,想像的數,因為它們所表示的是負數的平方根。對於這類數,我們只能斷言,它們既不是什麼都不是,也不比什麼都不是多些什麼,更不比什麼都不是少些什麼,它們純屬虛幻。」
⑧ 數學中有哪些數
1.質數與合數
質數,又名素數,是指只能被1和自身整除的數。如2,3, 5, 7, 11……
合數,是指除了1與自身之外還有其他的約數,如4,除了1與4之外,它還能被2整除。
2、公因數、最大公約數和最小公倍數
公因數,又稱公約數,在兩個或兩個以上的自然數中,如果它們有相同的因數,那麼這些因數就叫做它們的公因數。任何兩個自然數都有公因數1.(除零以外)而這些公因數中最大的那個稱為這些正整數的最大公因數。
求幾個整數的最大公因數,只要把它們的所有共有的素因數連乘,所得的積就是它們的最大公因數。
3、 實數與虛數
負數開平方,在實數范圍內無解。
數學家們就把這種運算的結果叫做虛數,因為這樣的運算在實數范圍內無法解釋,所以叫虛數。
實數和虛數組成的一對數在復數范圍內看成一個數,起名為復數。
於是,實數成為特殊的復數(缺序數部分),虛數也成為特殊的復數(缺實數部分)。
虛數單位為i, i即根號負1。
3i為虛數,即根號(-3), 即3×根號(-1)
2+3i為復數,(實數部分為2,虛數部分為3i)
復數和虛數不一樣,形如a+bi的數。式中a,b 為實數,i是 一個滿足i2=-1的數,因為任何實數的平方不等於-1,所以i不是實數,而是實數以外的新的數。在復數a+bi中,a 稱為復數的實部,b稱為復數的虛部,i稱為虛數單位。當虛部等於零時,這個復數就是實數;當虛部不等於零時,這個復數稱為虛數,虛數的實部如果等於零,則稱為純虛數。由上可知,復數集包含了實數集,因而是實數集的擴張.
4、、有理數與無理數
有理數(rational number):能精確地表示為兩個整數之比的數.
如3,-98.11,5.72727272……,7/22都是有理數.
整數和通常所說的分數都是有理數.有理數還可以劃分為正有理數,0和負有理數.
無理數指無限不循環小數
非負整數集(或自然數集)記作 N 都指的那些?
N---0和自然數,如:0。1。2。3。。。
正整數集 記作 N + 都指的那些?
N+----正整數,如:1。2。3。。。。
整數集 記作 Z 都指的那些?
Z---正整數和負整數和0,如:。。。-2。-1。0。1。2。3。。。
實數集 記作 R 指的那些 ?
R---有理數和無理數
無限不循環小數和開根開不盡的數叫無理數
整數和分數統稱為有理數
數學上,有理數是兩個整數的比,通常寫作 a/b,這里 b 不為零。分數是有理數的通常表達方法,而整數是分母為1的分數,當然亦是有理數。
數學上,有理數是一個整數 a 和一個非零整數 b 的比(ratio),通常寫作 a/b,故又稱作分數。希臘文稱為 λογος ,原意為「成比例的數」(rational number),但中文翻譯不恰當,逐漸變成「有道理的數」。不是有理數的實數遂稱為無理數。
所有有理數的集合表示為 Q,有理數的小數部分有限或為循環。
5、 整數
整數(Integer):像-2,-1,0,1,2這樣的數稱為整數。(整數是表示物體個數的數,0表示有0個物體)整數是人類能夠掌握的最基本的數學工具。整數的全體構成整數集,整數集合是一個數環。在整數系中,自然數為0和正整數的統稱,稱0為零,稱-1、-2、-3、…、-n、… (n為整數)為負整數。正整數、零與負整數構成整數系。 一個給定的整數n可以是負數(n∈Z-),非負數(n∈Z*),零(n=0)或正數(n∈Z+).
我們以0為界限,將整數分為三大類 1.正整數,即大於0的整數如,1,2,3,…,n,… 2.0 既不是正整數,也不是負整數,他是介於正整數和負整數的數 3.負整數,即小於0的整數如,-1,-2,-3,…,-n,…
6、 奇數與偶數
奇數(英文:odd)數學術語 , 整數中,能被2整除的數是偶數,不能被2整除的數是奇數,偶數可用2k表示,奇數可用2k+1表示,這里k是整數。 奇數包括正奇數、負奇數。
關於奇數和偶數,有下面的性質: (1)奇數不會同時是偶數;兩個連續整數中必是一個奇數一個偶數。 (2)奇數跟奇數的和是偶數;偶數跟奇數的和是奇數;任意多個偶數的和是偶數。 (3)兩個奇(偶)數的差是偶數;一個偶數與一個奇數的差是奇數。 (4)若a、b為整數,則a+b與a-b有相同的奇偶性,即a+b與a-b同為奇數或同為偶數。 (5)n個奇數的乘積是奇數,n個偶數的乘積是偶數;順式中有一個是偶數,則乘積是偶數,即:A*B*C*…*偶數*X*Y=偶數,式中A、B、C、…X、Y皆為整數,公式可簡化為:奇數*偶數=偶數。 (6) 奇數的個位是1、3、5、7、9;偶數的個位是0、2、4、6、8.(0是個特殊的偶數。2002年國際數學協會規定,零為偶數.我國2004年也規定零為偶數。小學規定0為最小的偶數,但是在初中學習了負數,出現了負偶數時,0就不是最小的偶數了.) (7)奇數的平方除以8餘1
7、 基數
在數學上,基數(cardinal number)也叫勢(cardinality),指集合論中刻畫任意集合所含元素數量多少的一個概念。兩個能夠建立元素間一一對應的集合稱為互相對等集合。例如3個人的集合和3匹馬的集合可以建立一 一對應,是兩個對等的集合。此外還有語言學和軍事上的基數。
8、 浮點數
浮點數是屬於有理數中某特定子集的數的數字表示,在計算機中用以近似表示任意某個實數。具體的說,這個實數由一個整數或定點數(即尾數)乘以某個基數(計算機中通常是2)的整數次冪得到,這種表示方法類似於基數為10的科學記數法。
9、 布爾值
布爾值是 true 或 false 中的一個。動作腳本也會在適當時將值 true 和 false 轉換為 1 和 0。布爾值經常與動作腳本語句中通過比較控制腳本流的邏輯運算符一起使用。
⑨ 數學中十幾幾代表多少
幾代表1~9中的任意一數。