㈠ 如何用matlab用數據畫出 散點圖,預測值,構建變數之間的函數關系,預測函數值的范圍
有了數據可以這樣來實現:
1、數據
x=[。。。];y=[。。。];
2、散點圖的繪制
plot(x,y,'*') %繪制散點圖
3、建立數學模型
根據散點圖的趨勢,初定數學模型(如y=a+b*e^x)
4、求擬合系數
用擬合函數(如nlinfit、lsqcurvefit)求出擬合系數a、b值
5、預測
用求出擬合函數表達式去預測未來值。
如有具體的數據和預測要求,可以幫你求解。
㈡ 如何利用excel製作數學模型
1.在表格中列好數據;
2.選中數據點擊菜單欄中的「插入」,選擇子菜單中的「圖表」,從圖表類型中選擇合適的圖表。(我一般用「XY散點圖」)
3.點擊菜單欄中的「圖表」,可以添加趨勢線。
如果要添加方程,可以在生成的圖表中繼續操作。
不知道你理解了沒?
我給個圖片吧。
㈢ 知道公式和一些成對數值,如何通過EXCEL建立非線性數學回歸模型
1、首先繪制圖表(圖表工具中的散點圖或折線圖);
2、點所繪線條或散點,右鍵內「添加趨勢線」;
3、根據需要選擇趨勢線類型(指數、冪等);
4、顯示公式及相關系數。
㈣ 怎麼用EXCEL製作一個散點圖,然後在散點圖上根據散點作一條有函數關系的直線
1、首先,我們打開我們的電腦,然後我們打開我們電腦上面的一個excel文檔。
㈤ 數學建模
論文:運用統計和概率方法分析美國GDP運行走勢
字體大小:大 | 中 | 小 2009-03-17 11:14 - 閱讀:37 - 評論:0
撰稿時間:2008年11月
摘要:以美國近幾十年的Real GDP(實際GDP)季度變化百分比作為離散型隨機變數,運用統計和概率方法,利用馬爾可夫鏈模型,按照變化幅度劇烈與緩慢進行量化、建模,從以往的幾十年實際GDP變化規律,預測未來一兩年內美國實際GDP變化走勢。
關鍵字:GDP;概率;統計;馬爾可夫鏈;轉移概率;經濟預測
1 引言
概率論與數理統計是研究隨機現象客觀規律性的數學學科,它的理論和方法已廣泛地應用於自然學科、技術科學和社會科學的各個領域,尤其在天氣預報、地質勘探等領域有著廣泛的應用。著名經濟學家特里夫·哈維默就認為全部經濟規律都可以用概率的方法來描述。各種經濟數據可以看作是一系列相互影響或者獨立的隨機變數,而經濟數據的變化則是一個個錯綜復雜的隨機過程。隨著全球經濟的融合和金融信息化,概率論在宏觀經濟預測、調控以及統計提供有效參考數據等方面將發揮越來越重要的作用。
國內生產總值(Gross Domestic Proct,GDP),是衡量一個國家經濟運行好壞的最重要的經濟運行指標之一。本文從概率論學角度出發,分析美國1947年以來近幾十年的實際GDP(Real GDP)變化情況,從變化的幅度大小和變化的時間跨度兩方面入手,將實際GDP變化百分比轉化為在有限狀態空間內變化的離散型隨機變數。這個隨機變數在狀態空間內轉移的過程也就是實際GDP隨時間變化的隨機過程,構建出實際GDP變化的馬爾可夫鏈模型。從而根據建立的概率模型來預測隨機變數的下一步的轉移情況,得到的就是未來實際GDP的運行走勢。大致的分析與預測過程可以描述為:數據處理->統計與分析->建立數學模型->得出結論。
2 對GDP的分析與建模
美國是全球最發達的經濟體,對美國經濟發展的運行指標進行研究和考察,不僅能揭示出美國經濟周期本身的特點,還可以對經濟運行起到良好的分析和借鑒作用,對世界各國宏觀經濟的運行預測和干預提供幫助。而且美國經濟指標體系的完備程度也最高,作為重要的公共信息定期發布和修正,從理論分析上保證了數據的可靠性和充分性。
國內生產總值(Gross Domestic Proct,GDP):是指一國生產的全部最終產品和服務的總值。GDP是目前各個國家和地區用來衡量該國或地區的經濟發展綜合水平通用的指標,反應一個國家總體經濟狀況的一張最為重要、綜合性最強的晴雨表。通常所說的GDP是指名義GDP(Normal GDP),而實際GDP(Real GDP)考慮到了通貨膨脹導致價格上升的因素,相對而言更准確的反應了一個國家的經濟發展。美國經濟分析局[1](Bureau of Economic Analysis)提供的多種GDP指標中以不同的權重來衡量,此次分析選擇了實際GDP季度變化百分比(Percent Change From Preceding Period in Real Gross Domestic Proct [Index numbers, 2000=100]),更關注的是GDP的波動變化。美國GDP數據每個季度公布一次,此次考察區間為1947年第2季度至2008年第3季度期間實際GDP變化百分比(見表1),用數學公式描述為一個離散的序列:t是表示季度的排序序號,從零開始;X表示實質GDP變化百分比
研究經濟數據的運行過程,也是構造數學模型的過程,必然以大量的數據統計為基礎。連續62年共246個季度的GDP變化百分比能夠反應了美國相當長時期內的GDP走勢,因此可以作為對今後一定長時期內GDP變化分析的數據依據[2]。
2.1 對GDP變化的直觀分析
由於經濟現象中經濟變數的變化錯綜復雜,必然帶有一定的隨機「干擾」,因此需要先對隨機變數分布作一定的假定。首先,使用微軟EXCEL軟體將上述變化百分比序列以散點圖形式繪制出來(見圖1)。從圖上可以直觀分析得出:美國連續62年以來,實際GDP變化百分比大體上經歷著「上升-下降-上升-下降」的不斷重復的特性,所不同的是,時間跨度和上升或下降的幅度不同。結合美國經濟發展歷史,在這62年期間美國經濟經歷了 「增長->衰退->增長->衰退」隨機往復特性。當處於經濟危機階段或者經濟滯脹時期,實際GDP變化百分比就會發生連續大幅上下震盪的趨勢,而當經濟處於平穩發展階段,實際GDP變化百分比呈現小幅上下震盪趨勢。由此可以根據實際GDP變化幅度反向推斷經濟運行趨勢。
2.2構建GDP變化的馬爾可夫鏈模型
馬爾可夫(Markov)過程是用於分析隨機過程的理論方法,對於時間和狀態都是離散的馬爾可夫過程稱為馬爾可夫鏈。馬爾可夫鏈模型通常用於統計學中的建模,在自然生物人口過程、商品市場佔有率變化、以及天氣變化方面都有非常廣泛的應用。如果某一時刻系統狀態的概率分布只與前一時刻的狀態有關,與以前的狀態無關,則該系統符合馬爾可夫性或者無後效性。實際GDP變化百分比受到很多外部經濟變數如戰爭、宏觀調控政策等各種因素的影響,變化呈現隨機特性,因此可以認為短期內未來實質GDP變化百分比只與當前階段的實質GDP變化有關,符合馬爾可夫性。
為了描述實際GDP百分比的變化幅度,先要對看似隨機變化的數據進行量化,幅度大小對百分比進行如下量化定義:
狀態1:大幅增長(一次或者連續幾次增長幅度超過7,包括邊界值);
狀態2:大幅下降(一次或者連續幾次下降幅度超過7,包括邊界值);
狀態3:小幅增長(一次或者連續幾次幅度增長大於1並且小於7);
狀態4:小幅下降(一次或者連續幾次幅度下降大於1並且小於7);
可以看出,區分大幅增長還是小幅度增長的變化幅度范圍對概率統計起到決定因素,不同的量化標准產生的統計結果也會不一樣。另外,在圖1中可以看到有些相鄰的時間點變化幅度非常微小,這里把這個叫做干擾,把前後相鄰變化幅度小於1的序列點視為干擾信號,近似認為後一個序列點狀態保持不變。如果將這種細微變化也算作小幅增長或者小幅下降,將會放大幹擾信號的作用。這樣實質GDP變化百分比就轉化成了一個在1、2、3、4有限狀態空間內變動的離散的時間序列。如果只關注狀態變化趨勢和經歷的時間,則只需要記錄狀態發生變化的134個序號以及發生的時間點即可,這樣一個新的狀態序列描述為:s代表排序序號,從零開始;t代表狀態發生變化的季度序號;Y代表狀態。
用Microsoft Excel的散點圖形式描繪的實際GDP變化狀態(見圖2)能夠更直觀的觀察實際GDP變化幅度在有限個狀態空間內的變化情況:
對上述狀態序列Y(t)進行統計,可以得出各狀態之間一步轉移的次數,進而計算出各狀態之間一步轉移概率和一步轉移矩陣P。另外,為了得到狀態發生一步轉移所經歷的時間跨度,需要計算出相應的狀態轉移的時間差,即當tn到tn+1時,狀態從Yn轉移到Yn+1,則對應的時間跨度為sn+1-sn,通過簡單的求平均值的方法求出所有一步狀態轉移對應的平均時間跨度(見表3),時間跨度以季度為一個單位。
狀態轉移 轉移次數 一步轉移概率 平均時間跨度
狀態1到狀態2 10 0.476 2.3
狀態1到狀態4 11 0.524 2.3
狀態2到狀態1 13 0.542 2.2
狀態2到狀態3 11 0.458 1.9
狀態3到狀態2 14 0.304 1.6
狀態3到狀態4 32 0.696 1.8
狀態4到狀態1 7 0.167 1.3
狀態4到狀態3 35 0.833 1.6
總計133次(表3:實際GDP狀態一步轉移統計結果)
2.3 根據馬爾可夫模型對近期美國GDP變化進行預測
當前實質GDP變化的狀態是4,根據上述轉移矩陣和每次轉移所經歷的時間跨度可以得出近期發生狀態轉移的結果,即近期實質GDP變化幅度和大致所需要經歷的時間。
當前狀態 轉移步數 目標狀態 轉移概率 平均時間跨度
4 2 2 0.333 3.4
4 2 4 0.667 3.5
4 3 1 0.292 5.3
4 3 3 0.708 5.2
表4:馬爾可夫鏈模型對實質GDP變化的預測結果
模型給出的預測結果顯示:美國實際GDP當前處於小幅下降階段,經過2次轉移後,大約在未來3~4個季度內,會出現兩種變化走勢,小幅下跌和大幅下跌,發生的可能性分別為66.7%和33.3%。經過3次轉移後,大約在未來5~6季度會發生小幅增長和大幅增長,發生的概率分別為70.8%和29.2%。由此分析得出,未來3~4個季度內(目前為2008年11月)美國經濟肯定會出現衰退,出現大幅幅度衰退的可能性高達66.7%;而經濟恢復則需要在未來5~6季度內發生,緩慢回升的概率更大,佔70.8%,由此看來美國未來一兩年內經濟形式面臨嚴峻考驗。
3 總結
概率論作為一門研究隨機現象的數量規律學科,通過將金融經濟中的數據以概率論方法統計分析後,可以關繫到各個國家經濟導向。今後將逐漸在經濟中發揮著重要的作用。馬爾科夫分析法是研究隨機事件變化趨勢的一種方法。經濟運行數據的變化也經常受到各種不確定因素的影響而帶有隨機性,若其具有「無後效性」,則可以用馬爾科夫分析法對其未來發展趨勢進行宏觀趨勢分析。實際GDP季度變化百分比是一個固定時間間隔的幅度大小發生變化的隨機過程,因此用馬爾可夫鏈模型分析其變化趨勢是比較符合這一類應用。首先對實際GDP季度變化百分比按照變化幅度劃分有限個狀態的狀態空間,然後對狀態之間的一步轉移情況進行統計,進而計算出實際GDP變化的一步轉移概率矩陣。由這個概率矩陣和當前狀態就可以推算出GDP變化下一個狀態是什麼,其概率為多少,也就是未來的實際GDP變化走勢。
任何模擬自然界數據的一種模型都會存在一定的誤差,不同的是誤差的大小不同而已。本文在數據處理階段即概率狀態空間的劃分過程中,由於不同的量化標准產生的統計結果也不一樣,因此會損失了部分樣本,產生了一定的誤差。
本文的概率分析過程僅針對眾多經濟運行指標中的一個進行,實際的經濟運行體包括多個經濟衡量指標,比如消費者物價指數、通貨膨脹率、失業率等等,它們之間相互關聯和影響,如果想更准確的得到經濟運行走勢,可以對多個經濟指標逐個分析,然後對每個分析和預測結果再進行綜合評測。
4標注
[1] 美國經濟分析局BEA(Bureau of Economic Analysis):BEA的功能主要是分析和綜合大量數據以便創造美國經濟的一個連貫模式。BEA還對國際、國家和地區的經濟進行預算和分析。其中以對國民生產總值(GDP)的預算最為著名。
[2] 美國實際GDP季度變化百分比僅從1947年開始有記載,因此數據有限,僅對未來短期內的GDP變化預測起到借鑒作用,對分析未來長期宏觀經濟形式可能會有局限性。
5參考文獻
[1],高鴻生,《西方經濟學(宏觀部分)第四版》,中國人民大學出版社,2007
[2] 隋亞莉,李鴻儒,《經濟數學基礎--概率統計(第3版)》,清華大學出版社
[3] 范曉志, 宋憲萍,概率論在經濟生活中的多維應用,《統計與決策》,2005,(8)
[4] 楊曾武,《統計預測原理》,中國財政經濟出版社,1990
[5] 郝艷茹,馬爾可夫鏈理論與市場佔有率分析和預測,《上海統計》,2000,(1)
http://kittyzhang007.blog.bokee.net/bloggermole/blog_viewblog.do?id=2748601
㈥ 悲催地只會「散點圖,趨勢線"。想請問一下,一般用什麼軟體、方法建模和擬合驗證已有數學模型呢謝謝
matlab、SPSS都可以,matlab里有專門的線性和非線性擬合函數,編程也簡單,也可以直接用matlab里的cftool工具箱操作,擬合函數也可以自定義。如果是要驗證數學模型,如果需要對數據的相關性進行分析,建議用SPSS里關於數據的聚類分析,都是直觀的界面操作,比較簡單;如果只是考察數據與模型的的擬合情況,在matlab里也可實現擬合優度等一系列參數的計算或假設檢驗等檢驗法。此外,matlab也可以先對數據進行殘差分析等預先剔掉一些壞值。
㈦ 數學建模怎麼做
問題一:數學建模怎麼做啊? 剛參加完九月份的全國大學生數學建模競賽。一份基本的的數學建模論文要包含以下幾個方面:
摘要,問題的背景與提出,問題的分析,模型的假設,符號說明,模型的建立與求解,模型的評價與推廣,參考文獻。
正規的數學建模論文篇幅一般在20頁以上。考慮到你讀初三,老師的要求不會這么高,而且你的能力應該還有所欠缺。我的建議為你按照自己實際情況選擇一個有一定挑戰性的題目,題目的性質類似於應用題,但又和普通的應用題不同,可以沒有確定答案,針對問題本身做一些分析和探討,最好能和實際相結合。
要注意的是假設要合理,要有數學模型(包括一些方程,不等式等),要有分析思路,並且要對自己建立的模型進行優缺點評價,最好能做相應推廣。
問題二:如何准備數學建模呢 需要做那些准備呢 作為大一、大二學生,第一,找一本有關建模的基礎教程,如清華大學姜啟源的《數學模型》(第三版)及配套習題和參考解答,系統地看完整個內容,並適當地選擇一些復雜的習題自己做一做。第二,學會一門數學軟體的使用,如matlab、mathematica、lingo、sps伐等。上面列出的軟體中,必須熟練掌握一門,其它的也要進行了解。再就是一般Office軟體如word、excel也要熟練掌握。特別要注意,word中數學公式的編排。平時多用,到競賽時就不會手忙腳亂了。第三,掌握科技論文旋渦狀的寫作方法。到網上下載一些以前全國或全美大學生數學建模競賽的獲獎論文,學習別人建模寫作方法。還有就是,平時多注意一些社會熱點問題,看看能否試著用已嘗到的數學建模方法去解決。
數學建模知識的平時積累,對一個想要參加數學建模競賽的大學生是非常重要的。你在自我學習的過程中,還就多和身邊的同學交流心得,合作地做幾個問題,這也有助於自己建模水平的提高,並鍛煉自己的協作工作能力、合作精神。
問題三:如何入門參與數學建模 學習運籌學知識和一些程序知識
問題四:如何利用excel製作數學模型 1.在表格中列好數據;
2.選中數據點擊菜單欄中的「插入」,選擇子菜單中的「圖表」,從圖表類型中選擇合適的圖表。(我一般用「XY散點圖」)
3.點擊菜單欄中的「圖表」,可以添加趨勢線。
如果要添加方程,可以在生成的圖表中繼續操作。
不知道你理解了沒?
我給個圖片吧。
問題五:數學建模里的題怎麼做? 你這個問題有些不好回答
不同的題目所用方法不同建模的目的不同
建模的要求不同
建模的條件不同
都會有影響
導致所用方法不同
㈧ 如何建立函數模型解決實際問題
(1)觀察實際情景:
對實際問題中的變化過程進行分析;
(2)發現和提出問題:
析出常量、變數及其相互關系;
(3)收集數據、分析數據:
明確其運動變化的基本特徵,從而確定它的運動變化類型;
(4)選擇函數模型:
根據分析結果,選擇適當的函數類型構建數學模型,將實際問題化歸為數學問題;
(5)求解函數模型:
根據實際問題,通過運算推理,求解函數模型; 比如計算函數的特殊值,研究函數的單調性,最值,極大極小值等。
(6)檢驗模型:
利用函數模型的解說明實際問題的變化規律,達到解決問題的目的.