導航:首頁 > 數字科學 > 高等數學怎麼算極限

高等數學怎麼算極限

發布時間:2023-01-12 06:40:37

1. 高等數學求極限的方法總結

1. 代入法, 分母極限不為零時使用。先考察分母的極限,分母極限是不為零的常數時即用此法。
【例1】lim[x-->√3](x^2-3)/(x^4+x^2+1)
解:lim[x-->√3](x^2-3)/(x^4+x^2+1)
=(3-3)/(9+3+1)=0
【例2】lim[x-->0](lg(1+x)+e^x)/arccosx
解:lim[x-->0](lg(1+x)+e^x)/arccosx
=(lg1+e^0)/arccos0
=(0+1)/1
=1
2. 倒數法,分母極限為零,分子極限為不等於零的常數時使用。
【例3】 lim[x-->1]x/(1-x)
解:∵lim[x-->1] (1-x)/x=0 ∴lim[x-->1] x/(1-x)= ∞
以後凡遇分母極限為零,分子極限為不等於零的常數時,可直接將其極限寫作∞。
3. 消去零因子(分解因式)法,分母極限為零,分子極限也為零,且可分解因式時使用。
【例4】 lim[x-->1](x^2-2x+1)/(x^3-x)
解:lim[x-->1](x^2-2x+1)/(x^3-x)
=lim[x-->1](x-1)^2/[x(x^2-1)
=lim[x-->1](x-1)/x
=0
【例5】lim[x-->-2](x^3+3x^2+2x)/(x^2-x-6)
解:lim[x-->-2] (x^3+3x^2+2x)/(x^2-x-6)
= lim[x-->-2]x(x+1)(x+2)/[(x+2)(x-3)]
= lim[x-->-2]x(x+1) / (x-3)
=-2/5
【例6】lim[x-->1](x^2-6x+8)/(x^2-5x+4)
解:lim[x-->1](x^2-6x+8)/(x^2-5x+4)
= lim[x-->1](x-2)(x-4)/[(x-1)(x-4)]
= lim[x-->1](x-2) /[(x-1)
=∞
【例7】lim[h-->0][(x+k)^3-x^3]/h
解:lim[h-->0][(x+h)^3-x^3]/h
= lim[h-->0][(x+h) –x][(x+h)^2+x(x+h)+h^2]/h
= lim[h-->0] [(x+h)^2+x(x+h)+h^2]
=2x^2
這實際上是為將來的求導數做准備。
4. 消去零因子(有理化)法,分母極限為零,分子極限也為零,不可分解,但可有理化時使用。可利用平方差、立方差、立方和進行有理化。
【例8】lim[x-->0][√1+x^2]-1]/x
解:lim[x-->0][√1+x^2]-1]/x
= lim[x-->0][√1+x^2]-1] [√1+x^2]+1]/{x[√1+x^2]+1]}
= lim[x-->0][ 1+x^2-1] /{x[√1+x^2]+1]}
= lim[x-->0] x / [√1+x^2]+1]
=0
【例9】lim[x-->-8][√(1-x)-3]/(2+x^(1/3))
解:lim[x-->-8][√(1-x)-3]/(2+x^(1/3))
=lim[x-->-8][√(1-x)-3] [√(1-x)+3] [4-2x^(1/3)+x^(2/3)]
÷{(2+x^(1/3))[4-2x^(1/3)+x^(2/3)] [√(1-x)+3]}
=lim[x-->-8](-x-8) [4-2x^(1/3)+x^(2/3)]/{(x+8)[√(1-x)+3]}
=lim[x-->-8] [4-2x^(1/3)+x^(2/3)]/[√(1-x)+3]
=-2
5. 零因子替換法。利用第一個重要極限:lim[x-->0]sinx/x=1,分母極限為零,分子極限也為零,不可分解,不可有理化,但出現或可化為sinx/x時使用。常配合利用三角函數公式。
【例10】lim[x-->0]sinax/sinbx
解:lim[x-->0]sinax/sinbx
= lim[x-->0]sinax/(ax)*lim[x-->0]bx/sinbx*lim[x-->0]ax/(bx)
=1*1*a/b=a/b
【例11】lim[x-->0]sinax/tanbx
解:lim[x-->0]sinax/tanbx
= lim[x-->0]sinax/ sinbx*lim[x-->0]cosbx
=a/b
6. 無窮轉換法,分母、分子出現無窮大時使用,常常借用無窮大和無窮小的性質。
【例12】lim[x-->∞]sinx/x
解:∵x-->∞ ∴1/x是無窮小量
∵|sinx|<=1, 是有界量 ∴sinx/x=sinx* 1/x是無窮小量
從而:lim[x-->∞]sinx/x=0
【例13】lim[x-->∞](x^2-1)/(2x^2-x-1)
解:lim[x-->∞](x^2-1)/(2x^2-x-1)
= lim[x-->∞](1 -1/x^2)/(2-1/x-1/ x^2)
=1/2
【例14】lim[n-->∞](1+2+……+n)/(2n^2-n-1)
解:lim[n-->∞](1+2+……+n)/(2n^2-n-1)
=lim[n-->∞][n( n+1)/2]/(2n^2-n-1)
=lim[n-->∞][ (1+1/n)/2]/(2-1/n-1/n^2)
=1/4
【例15】lim[x-->∞](2x-3)^20(3x+2)^30/(5x+1)^50
解:lim[x-->∞](2x-3)^20(3x+2)^30/(5x+1)^50
= lim[x-->∞][(2x-3)/ (5x+1)]^20[(3x+2)/ (5x+1)]^30
= lim[x-->∞][(2-3/x)/ (5+1/ x)]^20[(3+2/ x)/ (5+1/ x)]^30
=(2/5)^20(3/5)^30=2^20*3^30/5^50

2. 高數極限公式是什麼

1、第一個重要極限的公式:

lim sinx / x = 1 (x->0)當x→0時,sin / x的極限等於1。

特別注意的是x→∞時,1 / x是無窮小,無窮小的性質得到的極限是0。

2、第二個重要極限的公式:

lim (1+1/x) ^x = e(x→∞)當x→∞時,(1+1/x)^x的極限等於e;或當x→0時,(1+x)^(1/x)的極限等於e。

其他公式:

1、橢圓周長(L)的精確計算要用到積分或無窮級數的求和,最早由伯努利提出,歐拉發展,對這類問題的討論引出一門數學分支橢圓積分L = 4a * sqrt(1-e^sin^t)的(0 - pi/2)積分,其中a為橢圓長軸,e為離心率。

2、定積分的近似計算,定積分應用相關公式,空間解析幾何和向量代數,多元函數微分法及應用,微分法在幾何上的應用,方向導數與梯度,多元函數的極值及其求法,重積分及其應用,柱面坐標和球面坐標,曲線積分,曲面積分,高斯公式,斯托克斯公式是曲線積分與曲面積分的關系。

3、設{xn}為一源個無窮實數數列的集合。如果存在實數a,對於任意正數ε,都N>0,唯一性若數列的極限存在,則極限值是唯一的,且它的任何子列的極限與原數列的相等。有界性:如果一個數列收斂有極限),那麼這個數列一定有界。

3. 高數中求極限的方法總結

1、極限分為一般極限,還有個數列極限

區別在於數列極限是發散的,是一般極限的一種。

2、解決極限的方法如下

(1)等價無窮小的轉化(只能在乘除時候使用,但是不是說一定在加減時候不能用但是前提是必須證明拆分後極限依然存在),e的X次方-1或者(1+x)的a次方-1等價於Ax等等。全部熟記(x趨近無窮的時候還原成無窮小)。

(2)洛必達法則(大題目有時候會有暗示要你使用這個方法)首先它的使用有嚴格的使用前提,必須是X趨近而不是N趨近(所以面對數列極限時候先要轉化成求x趨近情況下的極限,當然n趨近是x趨近的一種情況而已,是必要條件。還有一點數列極限的n當然是趨近於正無窮的不可能是負無窮)。必須是函數的導數要存在(假如告訴你g(x),沒告訴你是否可導,直接用無疑是死路一條)。必須是0比0,無窮大比無窮大!當然還要注意分母不能為0。

3、泰勒公式

(含有e^x的時候,尤其是含有正余旋的加減的時候要特變注意)e^x展開,sinx展開,cos展開,ln(1+x)展開對題目簡化有很好幫助。

4、面對無窮大比上無窮大形式的解決辦法

取大頭原則最大項除分子分母,看上去復雜處理很簡單。

5、無窮小與有界函數的處理辦法

面對復雜函數時候,尤其是正餘弦的復雜函數與其他函數相乘的時候,一定要注意這個方法。面對非常復雜的函數可能只需要知道它的范圍結果就出來了。

6、夾逼定理

(主要對付的是數列極限)這個主要是看見極限中的函數是方程相除的形式,放縮和擴大。

7、等比等差數列公式應用

對付數列極限,q絕對值符號要小於1。

8、各項的拆分相加

來消掉中間的大多數,對付的還是數列極限,可以使用待定系數法來拆分化簡函數。

9、求左右求極限的方式

(對付數列極限)例如知道Xn與Xn+1的關系,已知Xn的極限存在的情況下,Xn的極限與Xn+1的極限是一樣的,應為極限去掉有限項目極限值不變化。

4. 數學極限怎麼求

數學極限求法參考如下:

高等數學的極限,是必備的技能,也是學習高等數學遇到的第一隻攔路虎。

方法/步驟

1、我們用同濟第六版的教科書,外皮是綠色的那本,開篇是一些函數,用來和高中銜接,比如取整函數、絕對值函數,要求會畫出他們的圖像,明了他們的性質。

2、接下來要學的定義域、單調性、單調區間、最值等,都要掌握他們的性質。還有四大反函數,高中學過他們的正函數,反函數就是定義域和值域互相反過來,一般取一個單調的區間來研究反函數。

3、比如說arccosX 定義域是[-1,1],取值域為[0,π]。掌握不牢的可以看高中的函數。另外復合函數,就是把五大類初等函數進行復合,形成的新的函數。以後,將會研究他們的定義域、單調性、最值等。

4、關於數列的極限,書上有嚴格的證明,ξ—N定義比較難以掌握,真正的好的大學老師,會把定義講的深入淺出,數列的極限就是x趨於∞時候,數列的值。函數的極限類似掌握。

5、但是,左右極限可能不相等,這就用到了我們分段函數的左右極限,左右不相等就是極限不存在。若使極限存在,我們也能求出應求的值。對於漸近線,也可以用極限的思想來求,水平漸近線就是x趨於∞的時候,y趨於常數;豎直漸近線則相反。

6、 對於求極限,先分析是什麼類型的,一般∞—∞或者帶分母的,要先有理化,另外0/0或者∞/∞型,可以用洛必達來求導。x~sinx~ln(1+x)~tanx,(1+x)^a-1~ax,需熟記。

5. 高等數學求極限有哪些方法

1、其一,常用的極限延伸,如:lim(x->0)(1+x)^1/x=e,lim(x->0)sinx/x=1。極限論是數學分析的基礎,極限問題是數學分析中的主要問題之一,中心問題有兩個:一是證明極限存在,極限問題是數學分析中的困難問題之一;二是求極限的值。

2、其二,羅比達法則,如0/0,oo/oo型,或能化成上述兩種情況的類型題目。兩個問題有密切的關系:若求出了極限的值,自然極限的存在性也被證明。

3、其三,泰勒展開,這類題目如有sinx,cosx,ln(1+x)等等可以邁克勞林展開為關於x的多項式。反之,證明了存在性,常常也就為計算極限鋪平了道路。本文主要概括了人們常用的求極限值的若干方法,更多的方法,有賴於人們根據具體情況進行具體的分析和處理。


4、等價無窮小的轉化, (只能在乘除時候使用,但是不是說一定在加減時候不能用 但是前提是必須證明拆分後極限依然存在) e的X次方-1 或者 (1+x)的a次方-1等價於Ax 等等 。(x趨近無窮的時候還原成無窮小)。

5、知道Xn與Xn+1的關系, 已知Xn的極限存在的情況下, xn的極限與xn+1的極限時一樣的 ,應為極限去掉有限項目極限值不變化。

6. 大學高等數學求極限的方法

基本方法有:

1、分式中,分子分母同除以最高次,化無窮大為無窮小計算,無窮小直接以0代入;

2、無窮大根式減去無窮大根式時,分子有理化,然後運用(1)中的方法;

3、運用兩個特別極限;

4、運用洛必達法則,但是洛必達法則的運用條件是化成無窮大比無窮大,或無窮小比無窮小,分子分母還必須是連續可導函數。它不是所向無敵,不可以代替其他所有方法,一樓言過其實。

5、用Mclaurin(麥克勞琳)級數展開,而國內普遍誤譯為Taylor(泰勒)展開。

6、等階無窮小代換,這種方法在國內甚囂塵上,國外比較冷靜。因為一要死背,不是值得推廣的教學法;二是經常會出錯,要特別小心。

7、夾擠法。這不是普遍方法,因為不可能放大、縮小後的結果都一樣。

8、特殊情況下,化為積分計算。

閱讀全文

與高等數學怎麼算極限相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:705
乙酸乙酯化學式怎麼算 瀏覽:1372
沈陽初中的數學是什麼版本的 瀏覽:1318
華為手機家人共享如何查看地理位置 瀏覽:1010
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:848
數學c什麼意思是什麼意思是什麼 瀏覽:1371
中考初中地理如何補 瀏覽:1260
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:671
數學奧數卡怎麼辦 瀏覽:1351
如何回答地理是什麼 瀏覽:989
win7如何刪除電腦文件瀏覽歷史 瀏覽:1023
大學物理實驗干什麼用的到 瀏覽:1449
二年級上冊數學框框怎麼填 瀏覽:1659
西安瑞禧生物科技有限公司怎麼樣 瀏覽:834
武大的分析化學怎麼樣 瀏覽:1213
ige電化學發光偏高怎麼辦 瀏覽:1301
學而思初中英語和語文怎麼樣 瀏覽:1608
下列哪個水飛薊素化學結構 瀏覽:1388
化學理學哪些專業好 瀏覽:1453
數學中的棱的意思是什麼 瀏覽:1017