導航:首頁 > 數字科學 > 歷史中重大數學問題有哪些方面

歷史中重大數學問題有哪些方面

發布時間:2023-01-13 10:28:07

『壹』 簡述數學史上的三次數學危機及其對數學發展的影響

數學悖論與三次數學危機
陳基耿
摘要:數學發展從來不是完全直線式的,而是常常出現悖論。歷史上一連串的
數學悖論動搖了人們對數學可靠性的信仰,數學史上曾經發生了三次數學危機。數學悖論的產生和危機的出現,不單給數學帶來麻煩和失望,更重要的是給數學的發展帶來新的生機和希望,促進了數學的繁榮。危機產生、解決、又產生的無窮反復過程,不斷推動著數學的發展,這個過程也是數學思想獲得重要發展的過程。
關鍵詞:數學悖論;數學危機;畢達哥拉斯悖論;貝克萊悖論;羅素悖論

數學歷來被視為嚴格、和諧、精確的學科,縱觀數學發展史,數學發展從來不是完全直線式的,他的體系不是永遠和諧的,而常常出現悖論。悖論是指在某一一定的理論體系的基礎上,根據合理的推理原則,推出了兩個互相矛盾的命題,或者是證明了這樣一個復合命題,它表現為兩個互相矛盾的命題的等價式[1]。數學悖論在數學理論中的發展是一件嚴重的事,因為它直接導致了人們對於相應理論的懷疑,而如果一個悖論所涉及的面十分廣泛的話,甚至涉及到整個學科的基礎時,這種懷疑情緒又可能發展成為普遍的危機感,特別是一些重要悖論的產生自然引起人們對數學基礎的懷疑以及對數學可靠性信仰的動搖。數學史上曾經發生過三次數學危機,每次都是由一兩個典型的數學悖論引起的。本文回顧了歷史上發生的三次數學危機,重點介紹了三次數學危機對數學發展的重要作用。
1畢達哥拉斯悖論與第一次數學危機
1.1第一次數學危機的內容
公元前六世紀,在古希臘學術界占統治地位的畢達哥拉斯學派,其思想在當時被認為是絕對權威的真理,畢達哥拉斯學派倡導的是一種稱為「唯數論」的哲學觀點,他們認為宇宙的本質就是數的和諧[2]。他們認為萬物皆數,而數只有兩種,就是正整數和可通約的數(即分數,兩個整數的比), 除此之外不再有別的數,即是說世界上只有整數或分數。
畢達哥拉斯學派在數學上的一項重大貢獻是證明了畢達哥拉斯定理[3],也就是我們所說的勾股定理。勾股定理指出直角三角形三邊應有如下關系,即a2=b2+c2,a和b分別代表直角三角形的兩條直角邊,c表示斜邊。
然而不久畢達哥拉斯學派的一個學生希伯斯很快便發現了這個論斷的問題。他發現邊長相等的正方形其對角線長並不能用整數或整數之比來表示。假設正方形邊長為1,並設其對角線長為d,依勾股定理應有d2=12+12=2,即d2=2,那麼d是多少呢?顯然d不是整數,那它必是兩整數之比。希伯斯花了很多時間來尋找這兩個整數之比,結果沒找著,反而找到了兩數不可通約性的證明[4],用反證法證明如下:設Rt△ABC,兩直角邊為a=b,則由勾股定理有c2=2a2,設已將a和c中的公約數約去,即a、c已經互素,於是c為偶數,a為奇數,不妨令c=2m,則有(2m)2=2a2,a2=2m2,於是a為偶數,這與前面已證a為奇數矛盾。這一發現歷史上稱為畢達哥拉斯悖論。
1.2第一次數學危機的影響
畢達哥拉斯悖論的出現,對畢達哥拉斯學派產生了沉重的打擊,「數即萬物」的世界觀被極大的動搖了,有理數的尊崇地位也受到了挑戰,因此也影響到了整個數學的基礎,使數學界產生了極度的思想混亂,歷史上稱之為第一次數學危機。
第一次數學危機的影響是巨大的,它極大的推動了數學及其相關學科的發展。首先,第一次數學危機讓人們第一次認識到了無理數的存在,無理數從此誕生了,之後,許多數學家正式研究了無理數,給出了無理數的嚴格定義,提出了一個含有有理數和無理數的新的數類——實數,並建立了完整的實數理論[5],為數學分析的發展奠定了基礎。再者,第一次數學危機表明,直覺和經驗不一定靠得住,推理證明才是可靠的,從此希臘人開始重視演繹推理,並由此建立了幾何公理體系。歐氏幾何就是人們為了消除矛盾,解除危機,在這時候應運而生的[6]。第一次數學危機極大地促進了幾何學的發展,使幾何學在此後兩千年間成為幾乎是全部嚴密數學的基礎,這不能不說是數學思想史上的一次巨大革命。
2貝克萊悖論與第二次數學危機
2.1第二次數學危機的內容
公元17世紀,牛頓和萊布尼茲創立了微積分,微積分能提示和解釋許多自然現象,它在自然科學的理論研究和實際應用中的重要作用引起人們高度的重視。然而,因為微積分才剛剛建立起來,這時的微積分只有方法,沒有嚴密的理論作為基礎,許多地方存在漏洞,還不能自圓其說。
例如牛頓當時是這樣求函數y=xn的導數的[7]:(x+△x)n=xn+n•xn-1•△x+[n(n+1)/2]•xn-2•(△x)2+……+(△x)n,然後用自變數的增量△x除以函數的增量△y ,△y/△x=[(x+△x)n-xn ]/△x=n•xn-1+[n(n-1)/2] •xn-2•△x+……+n•x•(△x)n-2+(△x)n-1,最後,扔掉其中含有無窮小量△x的項,即得函數y=xn的導數為y′=nxn-1。
對於牛頓對導數求導過程的論述,哲學家貝克萊很快發現了其中的問題,他一針見血的指出:先用△x為除數除以△y,說明△x不等於零,而後又扔掉含有△x的項,則又說明△x等於零,這豈不是自相矛盾嗎?因此貝克萊嘲弄無窮小是「逝去的量的鬼魂」,他認為微積分是依靠雙重的錯誤得到了正確的結果,說微積分的推導是「分明的詭辯」。[8]這就是著名的「貝克萊悖論」。
確實,這種在同一問題的討論中,將所謂的無窮小量有時作為0,有時又異於0的做法,不得不讓人懷疑。無窮小量究竟是不是零?無窮小及其分析是否合理?貝克萊悖論的出現危及到了微積分的基礎,引起了數學界長達兩個多世紀的論戰,從而形成了數學發展史中的第二次危機。
2.2第二次數學危機的影響[8]
第二次數學危機的出現,迫使數學家們不得不認真對待無窮小量△x,為了克服由此引起思維上的混亂,解決這一危機,無數人投入大量的勞動。在初期,經過歐拉、拉格朗日等人的努力,微積分取得了一些進展;從19世紀開始為徹底解決微積分的基礎問題,柯西、外爾斯特拉斯等人進行了微積分理論的嚴格化工作。微積分內在的根本矛盾,就是怎樣用數學的和邏輯的方法來表現無窮小,從而表現與無窮小緊密相關的微積分的本質。在解決使無窮小數學化的問題上,出現了羅比達公理:一個量增加或減少與之相比是無窮小的另一個量,則可認為它保持不變。而柯西採用的ε-δ方法刻畫無窮小,把無窮小定義為以0為極限的變數,沿用到今,無窮小被極限代替了。後來外爾斯特拉斯又把它明確化,給出了極限的嚴格定義,建立了極限理論,這樣就使微積分建立在極限基礎之上了。極限的ε-δ定義就是用靜態的ε-δ刻畫動態極限,用有限量來描述無限性過程,它是從有限到無限的橋梁和路標,它表現了有限與無限的關系,使微積分朝科學化、數學化前進了一大步。極限理論的建立加速了微積分的發展,它不僅在數學上,而且在認識論上也有重大的意義。後來在考查極限理論的基礎中,經過代德金、康托爾、海涅、外爾斯特拉斯和巴門赫等人的努力,產生了實數理論;在考查實數理論的基礎時,康托爾又創立了集合論。這樣有了極限理論、實數理論和集合論三大理論後,微積分才算建立在比較穩固和完美的基礎之上了,從而結束了二百多年的紛亂爭論局面,進而開辟了下一個世紀的函數論的發展道路。
3羅素悖論與第三次數學危機
3.1第三次數學危機的內容
在前兩次數學危機解決後不到30年即19世紀70年代,德國數學家康托爾創立了集合論,集合論是數學上最具革命性的理論,初衷是為整個數學大廈奠定堅實的基礎。1900年,在巴黎召開的國際數學家會議上,法國大數學家龐加萊興奮的宣布[9]:「我們可以說,現在數學已經達到了絕對的嚴格。」然而,正當人們為集合論的誕生而歡欣鼓舞之時,一串串數學悖論卻冒了出來,又攪得數學家心裡忐忑不安,其中英國數學家羅素1902年提出的悖論影響最大,「羅素悖論」的內容是這樣的:設集合B是一切不以自身為元素的集合所組成的集合,問:B是否屬於B?若B屬於B,則B是B的元素,於是B不屬於自身,即B不屬於B;反之,若B不屬於B,則B不是B的元素,於是B屬於自己,即B屬於B。這樣,利用集合的概念,羅素導出了——集合B不屬於B當且僅當集合B屬於B時成立的悖論。之後,羅素本人還提出了羅素悖論的通俗版本,即理發師悖論[10]。理發師宣布了這樣一條原則:他只為村子裡不給自己刮鬍子的人刮鬍子。那麼現在的問題是,理發師的鬍子應該由誰來刮?。如果他自己給自己刮鬍子,那麼他就是村子裡給自己刮鬍子的人,根據他的原則,他就不應給自己刮鬍子;如果他不給自己刮鬍子,那麼他就是村子裡不給自己刮鬍子的人,那麼又按他的原則他就該為自己刮鬍子。同樣有產生了這樣的悖論:理發師給自己刮鬍子當且僅當理發師不給自己刮鬍子。這就是歷史上著名的羅素悖論。羅素悖論的出現,動搖了數學的基礎,震撼了整個數學界,導致了第三次數學危機。
3.2第三次數學危機的影響
羅素悖論的出現,動搖了本來作為整個數學大廈的基礎——集合論,自然引起人們對數學基本結構有效性的懷疑。羅素悖論的高明之處,還在於它只是用了集合的概念本身,而並不涉及其它概念而得出來的,使人們更是無從下手解決。羅素悖論導致的第三次數學危機,使數學家們面臨著極大的困難。
數學家弗雷格在他剛要出版的《論數學基礎》卷二末尾就寫道[11]:「對一位科學家來說,沒有一件比下列事實更令人掃興:當他工作剛剛完成的時候,它的一塊基石崩塌下來了。在本書的印刷快要完成時,羅素先生給我的一封信就使我陷入這種境地。」可見第三次數學危機使人們面臨多麼尷尬的境地。然而科學面前沒有人會迴避,數學家們立即投入到了消除悖論的工作中,值得慶幸的是,產生羅素悖論的根源很快被找到了,原來康托爾提出集合論時對「集合」的概念沒有做必要的限制,以至於可以構造「一切集合的集體」這種過大的集合而產生了悖論。
為了從根本上消除集合論中出現的各種悖論,特別是羅素悖論,許多數學家進行了不懈的努力。如以羅素為主要代表的邏輯主義學派[12],提出了類型論以及後來的曲折理論、限制大小理論、非類理論和分支理論,這些理論都對消除悖論起到了一定的作用;而最重要的是德國數學家策梅羅提出的集合論的公理化,策梅羅認為,適當的公理體系可以限制集合的概念,從邏輯上保證集合的純粹性,他首次提出了集合論公理系統,後經費蘭克爾、馮•諾伊曼等人的補充形成了一個完整的集合論公理體系(ZFC系統)[5],在ZFC系統中,「集合」和「屬於」是兩個不加定義的原始概念,另外還有十條公理。ZFC系統的建立,使各種矛盾得到迴避,從而消除了羅素悖論為代表的一系列集合悖論,第三次數學危機也隨之銷聲匿跡了。
盡管悖論消除了,但數學的確定性卻在一步一步喪失,現代公理集合論一大堆公理是在很難說孰真孰假,可是又不能把它們一古腦消除掉,它們跟整個數學是血肉相連的,所以第三次危機表面上解決了,實質上更深刻地以其它形式延續[7]。為了消除第三次數學危機,數理邏輯也取得了很大發展,證明論、模型論和遞歸論相繼誕生,出現了數學基礎理論、類型論和多值邏輯等。可以說第三次數學危機大大促進了數學基礎研究及數理邏輯的現代性,而且也因此直接造成了數學哲學研究的「黃金時代」。
4結語
歷史上的三次數學危機,給人們帶來了極大的麻煩,危機的產生使人們認識到了現有理論的缺陷,科學中悖論的產生常常預示著人類的認識將進入一個新階段,所以悖論是科學發展的產物,又是科學發展源泉之一。第一次數學危機使人們發現無理數,建立了完整的實數理論,歐氏幾何也應運而生並建立了幾何公理體系;第二次數學危機的出現,直接導致了極限理論、實數理論和集合論三大理論的產生和完善,使微積分建立在穩固且完美的基礎之上;第三次數學危機,使集合論成為一個完整的集合論公理體系(ZFC系統),促進了數學基礎研究及數理邏輯的現代性。
數學發展的歷史表明對數學基礎的深入研究、悖論的出現和危機的相對解決有著十分密切的關系,每一次危機的消除都會給數學帶來許多新內容、新認識,甚至是革命性的變化,使數學體系達到新的和諧,數學理論得到進一步深化和發展。悖論的存在反映了數學概念、原理在一定歷史階段會存在很多矛盾,導致人們的懷疑,產生危機感,然而事物就是在不斷產生矛盾和解決矛盾中逐漸發展完善起來的,舊的矛盾解決了,新的矛盾還會產生,而就是在其過程中,人們便不斷積累了新的認識、新的知識,發展了新的理論。數學家對悖論的研究和解決促進了數學的繁榮和發展,數學中悖論的產生和危機的出現,不單是給數學帶來麻煩和失望,更重要的是給數學的發展帶來新的生機和希望。
數學中悖論和危機的歷史也說明了這一點:已有的悖論和危機消除了,又產生新的悖論和危機。但是人的認識是發展的,悖論或危機遲早都能獲得解決。「產生悖論和危機,然後努力解決它們,而後又產生新的悖論和危機。」這是一個無窮反復的過程,也就不斷推動著數學的發展,這個過程也是數學思想獲得重要發展的過程。

參考文獻:
[1] 師瓊,王保紅.悖論及其意義[J].中共山西省委黨校學報,2005,28(4):76~78.
[2] 趙院娥,喬淑莉.悖論及其對數學發展的影響[J].延安大學學報(自然科學版),2004,2(1):21~25.
[3] 李春蘭.試論數學史上的第一次危機及其影響[J].內蒙古師范大學學報(教育科學版),2006,19(1):88~90.
[4] 梁偉.試析悖論與數學史上三次危機及其方法論意義[J].科技資訊,2005,(27):187~188.
[5] 王方漢.歷史上的三次數學危機[J].數學通報,2002,(5):42~43.
[6] 胡作玄.第三次數學危機[M].四川:四川人民出版社,1985,1~108.
[7] 黃燕玲,代賢軍.悖論對數學發展的影響[J].河池師專學報,2003, 23(4):62~64.
[8] 周勇.第2次數學危機的影響和啟示[J].數學通訊,2005,(13):47.
[9] 王庚.數學怪論[A].數學文化與數學教育——數學文化報告集[C].北京:科學出版社,2004.13~25.
[10] 蘭林世.三次數學危機與悖論[J].集寧師專學報,2003,25(4):47~49.
[11] 王風春.數學史上的三次危機[J].上海中學數學,2004,(6):42~43.
[12] 張懷德.數學危機與數學發展[J].甘肅高師學報,2004,9(2):60~62.

『貳』 歷史上有哪些已經被解決的些著名的數學問題

勾股定理簡史
中國

公元前十一世紀,周朝數學家商高就提出「勾三、股四、弦五」。《周髀算經》中記錄著商高同周公的一段對話。商高說:「…故折矩,勾廣三,股修四,經隅五。」意為:當直角三角形的兩條直角邊分別為3(勾)和4(股)時,徑隅(弦)則為5。以後人們就簡單地把這個事實說成「勾三股四弦五」,根據該典故稱勾股定理為商高定理。
公元三世紀,三國時代的趙爽對《周髀算經》內的勾股定理作出了詳細注釋,記錄於《九章算術》中「勾股各自乘,並而開方除之,即弦」,趙爽創制了一幅「勾股圓方圖」,用形數結合得到方法,給出了勾股定理的詳細證明。後劉徽在劉徽注中亦證明了勾股定理。
在中國清朝末年,數學家華蘅芳提出了二十多種對於勾股定理證法。

外國
遠在公元前約三千年的古巴比倫人就知道和應用勾股定理,他們還知道許多勾股數組。美國哥倫比亞大學圖書館內收藏著一塊編號為「普林頓322」的古巴比倫泥板,上面就記載了很多勾股數。古埃及人在建築宏偉的金字塔和測量尼羅河泛濫後的土地時,也應用過勾股定理。
公元前六世紀,希臘數學家畢達哥拉斯證明了勾股定理,因而西方人都習慣地稱這個定理為畢達哥拉斯定理。
公元前4世紀,希臘數學家歐幾里得在《幾何原本》(第Ⅰ卷,命題47)中給出一個證明。
1876年4月1日,加菲爾德在《新英格蘭教育日誌》上發表了他對勾股定理的一個證法。
1940年《畢達哥拉斯命題》出版,收集了367種不同的證法。
--網路

『叄』 數學歷史上重大事件

第一次數學危機

起因
00畢達哥拉斯學派主張「數」是萬物的本原、始基,而宇宙中一切現象都可歸結為整數或整數之比。在希帕索斯悖論發現之前,人們僅認識到自然數和有理數,有理數理論成為占統治地位的數學規范,希帕索斯發現的無理數,暴露了原有數學規范的局限性。由此看來,希帕索斯悖論是由於主觀認識上的錯誤而造成的。
經過
00公元前5世紀,畢達哥拉斯學派的成員希帕索斯(470B.C.前後)發現:等腰直角三角形斜邊與一直角邊是不可公度的,它們的比不能歸結為整數或整數之比。這一發現不僅嚴重觸犯了畢達哥拉斯學派的信條,同時也沖擊了當時希臘人的普遍見解,因此在當時它就直接導致了認識上的「危機」。希帕索斯的這一發現,史稱「希帕索斯悖論」,從而觸發了數學史上的第一次危機。
影響
00希帕索斯的發現,促使人們進一步去認識和理解無理數。但是,基於生產和科學技術的發展水平,畢達哥拉斯學派及以後的古希臘的數學家們沒有也不可能建立嚴格的無理數理論,他們對無理數的問題基本上採取了迴避的態度,放棄對數的算術處理,代之以幾何處理,從而開始了幾何優先發展的時期,在此後兩千年間,希臘的幾何學幾乎成了全部數學的基礎。當然,這種將整個數學捆綁在幾何上的狹隘作法,對數學的發展也產生了不利的影響。
00希帕索斯的發現,說明直覺和經驗不一定靠得住,而推理和證明才是可靠的,這就導致了亞里士多德的邏輯體系和歐幾里德幾何體系的建立。
編輯本段
第二次數學危機

起因
00十七世紀末,牛頓和萊布尼茲創立的微積分理論在實踐中取得了成 第二次數學危機功的應用,大部分數學家對於這一理論的可靠性深信不移。但是,當時的微積分理論主要是建立在無窮小分析之上的,而無窮小分析後來證明是包含邏輯矛盾的。
經過
001734年,英國大主教貝克萊發表了《分析學者,或致一個不信教的數學家。其中審查現代分析的對象、原則與推斷是否比之宗教的神秘與教條,構思更為清楚,或推理更為明顯》一書,對當時的微積分學說進行了猛烈的抨擊。他說牛頓先認為無窮小量不是零,然後又讓它等於零,這違背了背反律,並且所得到的流數實際上是0/0,是「依靠雙重錯誤你得到了雖然不科學卻是正確的結果」,這是因為錯誤互相抵償的緣故。在數學史上,稱之為「貝克萊悖論」。這一悖論的發現,在當時引起了一定的思想混亂,導致了數學史上的第二次危機,引起了持續200多年的微積分基礎理論的爭論。
00貝克萊攻擊「無窮小」,其目的是為宗教神學作論證,而作為「貝克萊悖論」本身,則是一個思想方法問題。因為數學要按照形式邏輯的不矛盾律來思維,不能在同一思維過程中既承認不等於零,又承認等於零。但是,事物的運動以其終點為極限,運動的結果在量上等於零,而在起點上則不等於零,這是事物運動的兩個方面,不應納入同一思維過程,如果把它們機械地聯結起來,必然會導致思維中的悖論。貝克萊悖論產生的原因在於無窮小量的辨證性與數學方法的形式特性的矛盾。
影響
00第二次數學危機的產物——分析基礎理論的嚴密化與集合論的創立。
00「貝克萊悖論」提出以後,許多著名數學家從各種不同的角度進行研究、探索,試圖把微積分重新建立在可靠的基礎之上。法國數學家柯西是數學分析的集大成者,通過《分析教程》(1821)、《無窮小計算講義》(1823)、《無窮小計算在幾何中的應用》(1826)這幾部著作,柯西建立起以極限為基礎的現代微積分體系。但柯西的體系仍有尚待改進之處。比如:他關於極限的語言尚顯模糊,依靠了運動、幾何直觀的東西;缺乏實數理論。德國數學家魏爾斯特拉斯是數學分析基礎的主要奠基者之一,他改進了波爾查諾、阿貝爾、柯西的方法,首次用「ε—δ」方法敘述了微積分中一系列重要概念如極限、連續、導數和積分等,建立了該學科的嚴格體系。「ε—δ」方法的提出和應用於微積分,標志著微積分算術化的完成。為了建立極限理論的基本定理,不少數學家開始給出無理數的嚴格定義。1860年,魏爾斯特拉斯提出用遞增有界數列來定義無理數;1872年,戴德金提出用分割來定義無理數;1883年,康托爾提出用基本序列來定義無理數;等等。這些定義,從不同的側面深刻揭示了無理數的本質,從而建立了嚴格的實數理論,徹底消除了希帕索斯悖論,把極限理論建立在嚴格的實數理論的基礎上,並進而導致集合論的誕生。
編輯本段
第三次數學危機

起因
00魏爾斯特拉斯用排除無窮小量的辦法來解決貝克萊悖論,而在上世紀60年代,魯濱遜又把無窮小量請了回來,引進了超實數的概念,從而建立了非標准分析,同樣也能精確地描述微積分,進而也解決了貝克萊悖論。但必須注意到,貝克萊悖論只是在相對意義下得到了解決,因為實數理論的無矛盾性歸結為集合論的無矛盾性,而集合論的無矛盾性至今仍未徹底解決。
經過
00經過第一、二次數學危機,人們把數學基礎理論的無矛盾性,歸結為集 第三次數學危機合論的無矛盾性,集合論已成為整個現代數學的邏輯基礎,數學這座富麗堂皇的大廈就算竣工了。看來集合論似乎是不會有矛盾的,數學的嚴格性的目標快要達到了,數學家們幾乎都為這一成就自鳴得意。法國著名數學家龐加萊(1854—1912)於1900年在巴黎召開的國際數學家會議上誇耀道:「現在可以說,(數學)絕對的嚴密性是已經達到了」。然而,事隔不到兩年,英國著名數理邏輯學家和哲學家羅素(1872—1970)即宣布了一條驚人的消息:集合論是自相矛盾的,並不存在什麼絕對的嚴密性!史稱「羅素悖論」。1918年,羅素把這個悖論通俗化,成為理發師悖論。羅素悖論的發現,無異於晴天劈靂,把人們從美夢中驚醒。羅素悖論以及集合論中其它一些悖論,深入到集合論的理論基礎之中,從而從根本上危及了整個數學體系的確定性和嚴密性。於是在數學和邏輯學界引起了一場軒然大波,形成了數學史上的第三次危機。
00產生集合論悖論的原因在於集合的辨證性與數學方法的形式特性或者形而上學的思維方法的矛盾。如產生羅素悖論的原因,就在於概括原則造集的任意性與生成集合的客觀規則的非任意性之間的矛盾。
影響
00第三次數學危機的產物——數理邏輯的發展與一批現代數學的產生。
00為了解決第三次數學危機,數學家們作了不同的努力。由於他們解決問題的出發點不同,所遵循的途徑不同,所以在本世紀初就形成了不同的數學哲學流派,這就是以羅素為首的邏輯主義學派、以布勞威爾(1881—1966)為首的直覺主義學派和以希爾伯特為首的形式主義學派。這三大學派的形成與發展,把數學基礎理論研究推向了一個新的階段。三大學派的數學成果首先表現在數理邏輯學科的形成和它的現代分支——證明論等——的形成上。
00為了排除集合論悖論,羅素提出了類型論,策梅羅提出了第一個集合論公理系統,後經弗倫克爾加以修改和補充,得到常用的策梅羅——弗倫克爾集合論公理體系,以後又經伯奈斯和哥德爾進一步改進和簡化,得到伯奈斯——哥德爾集合論公理體系。希爾伯特還建立了元數學。作為對集合論悖論研究的直接成果是哥德爾不完全性定理。
00美國傑出數學家哥德爾於本世紀30年代提出了不完全性定理。他指出:一個包含邏輯和初等數論的形式系統,如果是協調的,則是不完全的,亦即無矛盾性不可能在本系統內確立;如果初等算術系統是協調的,則協調性在算術系統內是不可能證明的。哥德爾不完全性定理無可辯駁地揭示了形式主義系統的局限性,從數學上證明了企圖以形式主義的技術方法一勞永逸地解決悖論問題的不可能性。它實際上告訴人們,任何想要為數學找到絕對可靠的基礎,從而徹底避免悖論的種種企圖都是徒勞無益的,哥德爾定理是數理邏輯、人工智慧、集合論的基石,是數學史上的一個里程碑。美國著名數學家馮·諾伊曼說過:「哥德爾在現代邏輯中的成就是非凡的、不朽的——它的不朽甚至超過了紀念碑,它是一個里程碑,在可以望見的地方和可以望見的未來中永遠存在的紀念碑」。
00時至今日,第三次數學危機還不能說已從根本上消除了,因為數學基礎和數理邏輯的許多重要課題還未能從根本上得到解決。然而,人們正向根本解決的目標逐漸接近。可以預料,在這個過程中還將產生許多新的重要成果。
00發現和提出悖論並加以研究,對於數學基礎、邏輯學和哲學都有重要意義。正如塔斯基(1901— )所指出的:「必須強調的是,悖論在建立現代演繹科學的基礎上佔有一個特別重要的地位。正如集合論的悖論,特別是羅素悖論成為邏輯和數學相容性形式化的起點一樣,撒謊者悖論及其語義學悖論導致了理論語義學的發展。」
http://ke..com/view/29395.htm

『肆』 歷史上.數學的九大難題是什麼

1。P(多項式演算法)問題對NP(非多項式演算法)問題
2。霍奇(Hodge)猜想
3。龐加萊(Poincare)猜想
4。黎曼(Riemann)假設
5。楊-米爾斯(Yang-Mills)存在性和質量缺口
6。納維葉-斯托克斯(Navier-Stokes)方程的存在性與光滑性
7。貝赫(Birch)和斯維訥通-戴爾(Swinnerton-Dyer)猜想

『伍』 世界近代三大數學難題各是什麼

世界近代三大數學難題之一:四色猜想。

世界近代三大數學難題之二: 費馬最後定理。

世界近代三大數學難題之三: 哥德巴赫猜想。

『陸』 有誰知道數學歷史中的重大事件 比如三大危機之類

第一次數學危機
從某種意義上來講,現代意義下的數學(也就是作為演繹系統的純粹數學)來源於古希臘的畢達哥拉斯學派。這個學派興旺的時期為公元前500年左右,它是一個唯心主義流派。他們重視自然及社會中不變因素的研究,把幾何、算術、天文學、音樂稱為「四藝」,在其中追求宇宙的和諧及規律性。他們認為「萬物皆數」,認為數學的知識是可靠的、准確的,而且可以應用於現實的世界。數學的知識是由於純粹的思維而獲得,並不需要觀察、直覺及日常經驗。

畢達哥拉斯的數是指整數,他們在數學上的一項重大發現是證明了勾股定理。他們知道滿足直角三角形三邊長的一般公式,但由此也發現了一些直角三角形的三邊比不能用整數來表達,也就是勾長或股長與弦長是不可通約的。這樣一來,就否定了畢達哥拉斯學派的信條:宇宙間的一切現象都能歸結為整數或整數之比。

不可通約性的發現引起第一次數學危機。有人說,這種性質是希帕索斯約在公元前400年發現的,為此,他的同伴把他拋進大海。不過更有可能是畢達哥拉斯已經知道這種事實,而希帕索斯因泄密而被處死。不管怎樣,這個發現對古希臘的數學觀點有極大的沖擊。這表明,幾何學的某些真理與算術無關,幾何量不能完全由整數及其比來表示,反之數卻可以由幾何量表示出來。整數的尊崇地位受到挑戰,於是幾何學開始在希臘數學中佔有特殊地位。

同時這也反映出,直覺和經驗不一定靠得住,而推理證明才是可靠的。從此希臘人開始由「自明的」公理出發,經過演繹推理,並由此建立幾何學體系,這不能不說是數學思想上一次巨大革命,這也是第一次數學危機的自然產物。

回顧以前的各種數學,無非都是「算」,也就是提供演算法。即使在古希臘,數學也是從實際出發,應用到實際問題中去的。比如泰勒斯預測日食,利用影子距離計算金字塔高度,測量船隻離岸距離等等,都是屬於計算技術范圍的。至於埃及、巴比倫、中國、印度等國的數學,並沒有經歷過這樣的危機和革命,所以也就一直停留在「算學」階段。而希臘數學則走向了完全不同的道路,形成了歐幾里得《幾何原本》的公理體系與亞里士多德的邏輯體系。
第二次數學危機
早在古代,人們就對長度、面積、體積的度量問題感興趣。古希臘的歐多克斯引入量的觀念來考慮連續變動的東西,並完全依據幾何來嚴格處理連續量。這造成數與量的長期脫離。古希臘的數學中除了整數之外,並沒有無理數的概念,連有理數的運算也沒有,可是卻有量的比例。他們對於連續與離散的關系很有興趣,尤其是芝諾提出的四個著名的悖論:

第一個悖論是說運動不存在,理由是運動物體到達目的地之前必須到達半路,而到達半路之前又必須到達半路的半路……如此下去,它必須通過無限多個點,這在有限長時間之內是無法辦到的。

第二個悖論是跑得很快的阿希里趕不上在他前面的烏龜。因為烏龜在他前面時,他必須首先到達烏龜的起點,然後用第一個悖論的邏輯,烏龜者在他的前面。這兩個悖論是反對空間、時間無限可分的觀點的。

而第三、第四悖論是反對空間、時間由不可分的間隔組成。第三個悖論是說「飛矢不動」,因為在某一時問間隔,飛矢總是在某個空間間隔中確定的位置上,因而是靜止的。第四個悖論是遊行隊伍悖論,內容大體相似。這說明希臘人已經看到無窮小與「很小很小」的矛盾。當然他們無法解決這些矛盾。

希臘人雖然沒有明確的極限概念,但他們在處理面積體積的問題時,卻有嚴格的逼近步驟,這就是所謂「窮竭法」。它依靠間接的證明方法,證明了許多重要而難證的定理。

到了十六、十七世紀,除了求曲線長度和曲線所包圍的面積等類問題外,還產生了許多新問題,如求速度、求切線,以及求極大、極小值等問題。經過許多人多年的努力,終於在十七世紀晚期,形成了無窮小演算——微積分這門學科,這也就是數學分析的開端。

牛頓和萊布尼茲被公認為微積分的奠基者。他們的功績主要在於:1,把各種問題的解法統一成一種方法,微分法和積分法;2,有明確的計算微分法的步驟;3.微分法和積分法互為逆運算。

由於運算的完整性和應用范圍的廣泛性,使微積分成為解決問題的重要工具。同時關於微積分基礎的問題也越來越嚴重。以求速度為例,瞬時速度是Δs/Δt當Δt趨向於零時的值。Δt是零、是很小的量,還是什麼東西,這個無窮小量究竟是不是零。這引起了極大的爭論,從而引發了第二次數學危機。

十八世紀的數學家成功地用微積分解決了許多實際問題,因此有些人就對這些基礎問題的討論不感興趣。如達朗貝爾就說,現在是「把房子蓋得更高些,而不是把基礎打得更加牢固」。更有許多人認為所謂的嚴密化就是煩瑣。

但也因此,微積分的基礎問題一直受到一些人的批判和攻擊,其中最有名的是貝克萊主教在1734年的攻擊。

十八世紀的數學思想的確是不嚴密的、直觀的、強調形式的計算,而不管基礎的可靠與否,其中特別是:沒有清楚的無窮小概念,因此導數、微分、積分等概念不清楚;對無窮大的概念也不清楚;發散級數求和的任意性;符號使用的不嚴格性;不考慮連續性就進行微分,不考慮導數及積分的存在性以及可否展成冪級數等等。

一直到十九世紀二十年代,一些數學家才開始比較關注於微積分的嚴格基礎。它們從波爾查諾、阿貝爾、柯西、狄里克萊等人的工作開始,最終由威爾斯特拉斯、戴德金和康托爾徹底完成,中間經歷了半個多世紀,基本上解決了矛盾,為數學分析奠定了一個嚴格的基礎。

波爾查諾不承認無窮小數和無窮大數的存在,而且給出了連續性的正確定義。柯西在1821年的《代數分析教程》中從定義變數開始,認識到函數不一定要有解析表達式。他抓住了極限的概念,指出無窮小量和無窮大量都不是固定的量而是變數,並定義了導數和積分;阿貝爾指出要嚴格限制濫用級數展開及求和;狄里克萊給出了函數的現代定義。

在這些數學工作的基礎上,維爾斯特拉斯消除了其中不確切的地方,給出現在通用的ε - δ的極限、連續定義,並把導數、積分等概念都嚴格地建立在極限的基礎上,從而克服了危機和矛盾。

十九世紀七十年代初,威爾斯特拉斯、戴德金、康托爾等人獨立地建立了實數理論,而且在實數理論的基礎上,建立起極限論的基本定理,從而使數學分析終於建立在實數理論的嚴格基礎之上了。

同時,威爾斯特拉斯給出一個處處不可微的連續函數的例子。這個發現以及後來許多病態函數的例子,充分說明了直觀及幾何的思考不可靠,而必須訴諸嚴格的概念及推理。由此,第二次數學危機使數學更深入地探討數學分析的基礎——實數論的問題。這不僅導致集合論的誕生,並且由此把數學分析的無矛盾性問題歸結為實數論的無矛盾性問題,而這正是二十世紀數學基礎中的首要問題。

1-6悖論的產生——第三次數學危機
數學史上的第三次危機,是由1897年的突然沖擊而出現的,到現在,從整體來看,還沒有解決到令人滿意的程度。這次危機是由於在康托的一般集合理論的邊緣發現悖論造成的。由於集合概念已經滲透到眾多的數學分支,並且實際上集合論成了數學的基礎,因此集合論中悖論的發現自然地引起了對數學的整個基本結構的有效性的懷疑。

1897年,福爾蒂揭示了集合論中的第一個悖論。兩年後,康托發現了很相似的悖論。1902年,羅素又發現了一個悖論,它除了涉及集合概念本身外不涉及別的概念。羅素悖論曾被以多種形式通俗化。其中最著名的是羅素於1919年給出的,它涉及到某村理發師的困境。理發師宣布了這樣一條原則:他給所有不給自己刮臉的人刮臉,並且,只給村裡這樣的人刮臉。當人們試圖回答下列疑問時,就認識到了這種情況的悖論性質:"理發師是否自己給自己刮臉?"如果他不給自己刮臉,那麼他按原則就該為自己刮臉;如果他給自己刮臉,那麼他就不符合他的原則。

羅素悖論使整個數學大廈動搖了。無怪乎弗雷格在收到羅素的信之後,在他剛要出版的《算術的基本法則》第2卷末尾寫道:"一位科學家不會碰到比這更難堪的事情了,即在工作完成之時,它的基礎垮掉了,當本書等待印出的時候,羅素先生的一封信把我置於這種境地"。於是終結了近12年的刻苦鑽研。

『柒』 關於中國數學歷史的全部問題.....

數學是中國古代科學中一門重要的學科,根據中國古代數學發展的特點,可以分為五個時期:萌芽;體系的形成;發展;繁榮和中西方數學的融合。

中國古代數學的萌芽

原始公社末期,私有制和貨物交換產生以後,數與形的概念有了進一步的發展,仰韶文化時期出土的陶器,上面已刻有表示1234的符號。到原始公社末期,已開始用文字元號取代結繩記事了。

西安半坡出土的陶器有用1~8個圓點組成的等邊三角形和分正方形為100個小正方形的圖案,半坡遺址的房屋基址都是圓形和方形。為了畫圓作方,確定平直,人們還創造了規、矩、准、繩等作圖與測量工具。據《史記·夏本紀》記載,夏禹治水時已使用了這些工具。

商代中期,在甲骨文中已產生一套十進制數字和記數法,其中最大的數字為三萬;與此同時,殷人用十個天乾和十二個地支組成甲子、乙丑、丙寅、丁卯等60個名稱來記60天的日期;在周代,又把以前用陰、陽符號構成的八卦表示八種事物發展為六十四卦,表示64種事物。

公元前一世紀的《周髀算經》提到西周初期用矩測量高、深、廣、遠的方法,並舉出勾股形的勾三、股四、弦五以及環矩可以為圓等例子。《禮記·內則》篇提到西周貴族子弟從九歲開始便要學習數目和記數方法,他們要受禮、樂、射、馭、書、數的訓練,作為「六藝」之一的數已經開始成為專門的課程。

春秋戰國之際,籌算已得到普遍的應用,籌算記數法已使用十進位值制,這種記數法對世界數學的發展是有劃時代意義的。這個時期的測量數學在生產上有了廣泛應用,在數學上亦有相應的提高。

戰國時期的百家爭鳴也促進了數學的發展,尤其是對於正名和一些命題的爭論直接與數學有關。名家認為經過抽象以後的名詞概念與它們原來的實體不同,他們提出「矩不方,規不可以為圓」,把「大一」(無窮大)定義為「至大無外」,「小一」(無窮小)定義為「至小無內」。還提出了「一尺之棰,日取其半,萬世不竭」等命題。

而墨家則認為名來源於物,名可以從不同方面和不同深度反映物。墨家給出一些數學定義。例如圓、方、平、直、次(相切)、端(點)等等。

墨家不同意「一尺之棰」的命題,提出一個「非半」的命題來進行反駁:將一線段按一半一半地無限分割下去,就必將出現一個不能再分割的「非半」,這個「非半」就是點。

名家的命題論述了有限長度可分割成一個無窮序列,墨家的命題則指出了這種無限分割的變化和結果。名家和墨家的數學定義和數學命題的討論,對中國古代數學理論的發展是很有意義的。

中國古代數學體系的形成

秦漢是封建社會的上升時期,經濟和文化均得到迅速發展。中國古代數學體系正是形成於這個時期,它的主要標志是算術已成為一個專門的學科,以及以《九章算術》為代表的數學著作的出現。

《九章算術》是戰國、秦、漢封建社會創立並鞏固時期數學發展的總結,就其數學成就來說,堪稱是世界數學名著。例如分數四則運算、今有術(西方稱三率法)、開平方與開立方(包括二次方程數值解法)、盈不足術(西方稱雙設法)、各種面積和體積公式、線性方程組解法、正負數運算的加減法則、勾股形解法(特別是勾股定理和求勾股數的方法)等,水平都是很高的。其中方程組解法和正負數加減法則在世界數學發展上是遙遙領先的。就其特點來說,它形成了一個以籌算為中心、與古希臘數學完全不同的獨立體系。

《九章算術》有幾個顯著的特點:採用按類分章的數學問題集的形式;算式都是從籌算記數法發展起來的;以算術、代數為主,很少涉及圖形性質;重視應用,缺乏理論闡述等。

這些特點是同當時社會條件與學術思想密切相關的。秦漢時期,一切科學技術都要為當時確立和鞏固封建制度,以及發展社會生產服務,強調數學的應用性。最後成書於東漢初年的《九章算術》,排除了戰國時期在百家爭鳴中出現的名家和墨家重視名詞定義與邏輯的討論,偏重於與當時生產、生活密切相結合的數學問題及其解法,這與當時社會的發展情況是完全一致的。

《九章算術》在隋唐時期曾傳到朝鮮、日本,並成為這些國家當時的數學教科書。它的一些成就如十進位值制、今有術、盈不足術等還傳到印度和阿拉伯,並通過印度、阿拉伯傳到歐洲,促進了世界數學的發展。

中國古代數學的發展

魏、晉時期出現的玄學,不為漢儒經學束縛,思想比較活躍;它詰辯求勝,又能運用邏輯思維,分析義理,這些都有利於數學從理論上加以提高。吳國趙爽注《周髀算經》,漢末魏初徐岳撰《九章算術》注,魏末晉初劉徽撰《九章算術》注、《九章重差圖》都是出現在這個時期。趙爽與劉徽的工作為中國古代數學體系奠定了理論基礎。

趙爽是中國古代對數學定理和公式進行證明與推導的最早的數學家之一。他在《周髀算經》書中補充的「勾股圓方圖及注」和「日高圖及注」是十分重要的數學文獻。在「勾股圓方圖及注」中他提出用弦圖證明勾股定理和解勾股形的五個公式;在「日高圖及注」中,他用圖形面積證明漢代普遍應用的重差公式,趙爽的工作是帶有開創性的,在中國古代數學發展中佔有重要地位。

劉徽約與趙爽同時,他繼承和發展了戰國時期名家和墨家的思想,主張對一些數學名詞特別是重要的數學概念給以嚴格的定義,認為對數學知識必須進行「析理」,才能使數學著作簡明嚴密,利於讀者。他的《九章算術》注不僅是對《九章算術》的方法、公式和定理進行一般的解釋和推導,而且在論述的過程中有很大的發展。劉徽創造割圓術,利用極限的思想證明圓的面積公式,並首次用理論的方法算得圓周率為 157/50和 3927/1250。

劉徽用無窮分割的方法證明了直角方錐與直角四面體的體積比恆為2:1,解決了一般立體體積的關鍵問題。在證明方錐、圓柱、圓錐、圓台的體積時,劉徽為徹底解決球的體積提出了正確途徑。

東晉以後,中國長期處於戰爭和南北分裂的狀態。祖沖之父子的工作就是經濟文化南移以後,南方數學發展的具有代表性的工作,他們在劉徽注《九章算術》的基礎上,把傳統數學大大向前推進了一步。他們的數學工作主要有:計算出圓周率在3.1415926~3.1415927之間;提出祖(日恆)原理;提出二次與三次方程的解法等。

據推測,祖沖之在劉徽割圓術的基礎上,算出圓內接正6144邊形和正12288邊形的面積,從而得到了這個結果。他又用新的方法得到圓周率兩個分數值,即約率22/7和密率355/113。祖沖之這一工作,使中國在圓周率計算方面,比西方領先約一千年之久;

祖沖之之子祖(日恆)總結了劉徽的有關工作,提出「冪勢既同則積不容異」,即等高的兩立體,若其任意高處的水平截面積相等,則這兩立體體積相等,這就是著名的祖(日恆)公理。祖(日恆)應用這個公理,解決了劉徽尚未解決的球體積公式。

隋煬帝好大喜功,大興土木,客觀上促進了數學的發展。唐初王孝通的《緝古算經》,主要討論土木工程中計算土方、工程分工、驗收以及倉庫和地窖的計算問題,反映了這個時期數學的情況。王孝通在不用數學符號的情況下,立出數字三次方程,不僅解決了當時社會的需要,也為後來天元術的建立打下基礎。此外,對傳統的勾股形解法,王孝通也是用數字三次方程解決的。

唐初封建統治者繼承隋制,656年在國子監設立算學館,設有算學博士和助教,學生30人。由太史令李淳風等編纂注釋《算經十書》,作為算學館學生用的課本,明算科考試亦以這些算書為准。李淳風等編纂的《算經十書》,對保存數學經典著作、為數學研究提供文獻資料方面是很有意義的。他們給《周髀算經》、《九章算術》以及《海島算經》所作的註解,對讀者是有幫助的。隋唐時期,由於歷法的需要,天算學家創立了二次函數的內插法,豐富了中國古代數學的內容。

算籌是中國古代的主要計算工具,它具有簡單、形象、具體等優點,但也存在布籌佔用面積大,運籌速度加快時容易擺弄不正而造成錯誤等缺點,因此很早就開始進行改革。其中太乙算、兩儀算、三才算和珠算都是用珠的槽算盤,在技術上是重要的改革。尤其是「珠算」,它繼承了籌算五升十進與位值制的優點,又克服了籌算縱橫記數與置籌不便的缺點,優越性十分明顯。但由於當時乘除演算法仍然不能在一個橫列中進行。算珠還沒有穿檔,攜帶不方便,因此仍沒有普遍應用。

唐中期以後,商業繁榮,數字計算增多,迫切要求改革計算方法,從《新唐書》等文獻留下來的算書書目,可以看出這次演算法改革主要是簡化乘、除演算法,唐代的演算法改革使乘除法可以在一個橫列中進行運算,它既適用於籌算,也適用於珠算。

中國古代數學的繁榮

960年,北宋王朝的建立結束了五代十國割據的局面。北宋的農業、手工業、商業空前繁榮,科學技術突飛猛進,火葯、指南針、印刷術三大發明就是在這種經濟高漲的情況下得到廣泛應用。1084年秘書省第一次印刷出版了《算經十書》,1213年鮑擀之又進行翻刻。這些都為數學發展創造了良好的條件。

從11~14世紀約300年期間,出現了一批著名的數學家和數學著作,如賈憲的《黃帝九章演算法細草》,劉益的《議古根源》,秦九韶的《數書九章》,李冶的《測圓海鏡》和《益古演段》,楊輝的《詳解九章演算法》《日用演算法》和《楊輝演算法》,朱世傑的《算學啟蒙》《四元玉鑒》等,很多領域都達到古代數學的高峰,其中一些成就也是當時世界數學的高峰。

從開平方、開立方到四次以上的開方,在認識上是一個飛躍,實現這個飛躍的就是賈憲。楊輝在《九章演算法纂類》中載有賈憲「增乘開平方法」、「增乘開立方法」;在《詳解九章演算法》中載有賈憲的「開方作法本源」圖、「增乘方法求廉草」和用增乘開方法開四次方的例子。根據這些記錄可以確定賈憲已發現二項系數表,創造了增乘開方法。這兩項成就對整個宋元數學發生重大的影響,其中賈憲三角比西方的帕斯卡三角形早提出600多年。

把增乘開方法推廣到數字高次方程(包括系數為負的情形)解法的是劉益。《楊輝演算法》中「田畝比類乘除捷法」卷,介紹了原書中22個二次方程和 1個四次方程,後者是用增乘開方法解三次以上的高次方程的最早例子。

秦九韶是高次方程解法的集大成者,他在《數書九章》中收集了21個用增乘開方法解高次方程(最高次數為10)的問題。為了適應增乘開方法的計算程序,奏九韶把常數項規定為負數,把高次方程解法分成各種類型。當方程的根為非整數時,秦九韶採取繼續求根的小數,或用減根變換方程各次冪的系數之和為分母,常數為分子來表示根的非整數部分,這是《九章算術》和劉徽注處理無理數方法的發展。在求根的第二位數時,秦九韶還提出以一次項系數除常數項為根的第二位數的試除法,這比西方最早的霍納方法早500多年。

元代天文學家王恂、郭守敬等在《授時歷》中解決了三次函數的內插值問題。秦九韶在「綴術推星」題、朱世傑在《四元玉鑒》「如象招數」題都提到內插法(他們稱為招差術),朱世傑得到一個四次函數的內插公式。

用天元(相當於x)作為未知數符號,立出高次方程,古代稱為天元術,這是中國數學史上首次引入符號,並用符號運算來解決建立高次方程的問題。現存最早的天元術著作是李冶的《測圓海鏡》。

從天元術推廣到二元、三元和四元的高次聯立方程組,是宋元數學家的又一項傑出的創造。留傳至今,並對這一傑出創造進行系統論述的是朱世傑的《四元玉鑒》。

朱世傑的四元高次聯立方程組表示法是在天元術的基礎上發展起來的,他把常數放在中央,四元的各次冪放在上、下、左、右四個方向上,其他各項放在四個象限中。朱世傑的最大貢獻是提出四元消元法,其方法是先擇一元為未知數,其他元組成的多項式作為這未知數的系數,列成若干個一元高次方程式,然後應用互乘相消法逐步消去這一未知數。重復這一步驟便可消去其他未知數,最後用增乘開方法求解。這是線性方法組解法的重大發展,比西方同類方法早400多年。

勾股形解法在宋元時期有新的發展,朱世傑在《算學啟蒙》卷下提出已知勾弦和、股弦和求解勾股形的方法,補充了《九章算術》的不足。李冶在《測圓海鏡》對勾股容圓問題進行了詳細的研究,得到九個容圓公式,大大豐富了中國古代幾何學的內容。

已知黃道與赤道的夾角和太陽從冬至點向春分點運行的黃經余弧,求赤經余弧和赤緯度數,是一個解球面直角三角形的問題,傳統歷法都是用內插法進行計算。元代王恂、郭守敬等則用傳統的勾股形解法、沈括用會圓術和天元術解決了這個問題。不過他們得到的是一個近似公式,結果不夠精確。但他們的整個推算步驟是正確無誤的,從數學意義上講,這個方法開辟了通往球面三角法的途徑。

中國古代計算技術改革的高潮也是出現在宋元時期。宋元明的歷史文獻中載有大量這個時期的實用算術書目,其數量遠比唐代為多,改革的主要內容仍是乘除法。與演算法改革的同時,穿珠算盤在北宋可能已出現。但如果把現代珠算看成是既有穿珠算盤,又有一套完善的演算法和口訣,那麼應該說它最後完成於元代。

宋元數學的繁榮,是社會經濟發展和科學技術發展的必然結果,是傳統數學發展的必然結果。此外,數學家們的科學思想與數學思想也是十分重要的。宋元數學家都在不同程度上反對理學家的象數神秘主義。秦九韶雖曾主張數學與道學同出一源,但他後來認識到,「通神明」的數學是不存在的,只有「經世務類萬物」的數學;莫若在《四元玉鑒》序文中提出的「用假象真,以虛問實」則代表了高度抽象思維的思想方法;楊輝對縱橫圖結構進行研究,揭示出洛書的本質,有力地批判了象數神秘主義。所有這些,無疑是促進數學發展的重要因素。

中西方數學的融合

中國從明代開始進入了封建社會的晚期,封建統治者實行極權統治,宣傳唯心主義哲學,施行八股考試制度。在這種情況下,除珠算外,數學發展逐漸衰落。

16世紀末以後,西方初等數學陸續傳入中國,使中國數學研究出現一個中西融合貫通的局面;鴉片戰爭以後,近代數學開始傳入中國,中國數學便轉入一個以學習西方數學為主的時期;到19世紀末20世紀初,近代數學研究才真正開始。

從明初到明中葉,商品經濟有所發展,和這種商業發展相適應的是珠算的普及。明初《魁本對相四言雜字》和《魯班木經》的出現,說明珠算已十分流行。前者是兒童看圖識字的課本,後者把算盤作為家庭必需用品列入一般的木器傢具手冊中。

隨著珠算的普及,珠算演算法和口訣也逐漸趨於完善。例如王文素和程大位增加並改善撞歸、起一口訣;徐心魯和程大位增添加、減口訣並在除法中廣泛應用歸除,從而實現了珠算四則運算的全部口訣化;朱載墒和程大位把籌算開平方和開立方的方法應用到珠算,程大位用珠算解數字二次、三次方程等等。程大位的著作在國內外流傳很廣,影響很大。

1582年,義大利傳教士利瑪竇到中國,1607年以後,他先後與徐光啟翻譯了《幾何原本》前六卷、《測量法義》一卷,與李之藻編譯《圜容較義》和《同文算指》。1629年,徐光啟被禮部任命督修歷法,在他主持下,編譯《崇禎歷書》137卷。《崇禎歷書》主要是介紹歐洲天文學家第谷的地心學說。作為這一學說的數學基礎,希臘的幾何學,歐洲玉山若乾的三角學,以及納皮爾算籌、伽利略比例規等計算工具也同時介紹進來。

在傳入的數學中,影響最大的是《幾何原本》。《幾何原本》是中國第一部數學翻譯著作,絕大部分數學名詞都是首創,其中許多至今仍在沿用。徐光啟認為對它「不必疑」、「不必改」,「舉世無一人不當學」。《幾何原本》是明清兩代數學家必讀的數學書,對他們的研究工作頗有影響。

其次應用最廣的是三角學,介紹西方三角學的著作有《大測》《割圓八線表》和《測量全義》。《大測》主要說明三角八線(正弦、餘弦、正切、餘切、正割、餘割、正矢、余矢)的性質,造表方法和用表方法。《測量全義》除增加一些《大測》所缺的平面三角外,比較重要的是積化和差公式和球面三角。所有這些,在當時歷法工作中都是隨譯隨用的。

1646年,波蘭傳教士穆尼閣來華,跟隨他學習西方科學的有薛鳳柞、方中通等。穆尼閣去世後,薛鳳柞據其所學,編成《歷學會通》,想把中法西法融會貫通起來。《歷學會通》中的數學內容主要有比例對數表》《比例四線新表》和《三角演算法》。前兩書是介紹英國數學家納皮爾和布里格斯發明增修的對數。後一書除《崇禎歷書》介紹的球面三角外,尚有半形公式、半弧公式、德氏比例式、納氏比例式等。方中通所著《數度衍》對對數理論進行解釋。對數的傳入是十分重要,它在歷法計算中立即就得到應用。

清初學者研究中西數學有心得而著書傳世的很多,影響較大的有王錫闡《圖解》、梅文鼎《梅氏叢書輯要》(其中數學著作13種共40卷)、年希堯《視學》等。梅文鼎是集中西數學之大成者。他對傳統數學中的線性方程組解法、勾股形解法和高次冪求正根方法等方面進行整理和研究,使瀕於枯萎的明代數學出現了生機。年希堯的《視學》是中國第一部介紹西方透視學的著作。

清康熙皇帝十分重視西方科學,他除了親自學習天文數學外,還培養了一些人才和翻譯了一些著作。1712年康熙皇帝命梅彀成任蒙養齋匯編官,會同陳厚耀、何國宗、明安圖、楊道聲等編纂天文演算法書。1721年完成《律歷淵源》100卷,以康熙「御定」的名義於1723年出版。其中《數理精蘊》主要由梅彀成負責,分上下兩編,上編包括《幾何原本》、《演算法原本》,均譯自法文著作;下編包括算術、代數、平面幾何平面三角、立體幾何等初等數學,附有素數表、對數表和三角函數表。由於它是一部比較全面的初等數學網路全書,並有康熙「御定」的名義,因此對當時數學研究有一定影響。

綜上述可以看到,清代數學家對西方數學做了大量的會通工作,並取得許多獨創性的成果。這些成果,如和傳統數學比較,是有進步的,但和同時代的西方比較則明顯落後了。

雍正即位以後,對外閉關自守,導致西方科學停止輸入中國,對內實行高壓政策,致使一般學者既不能接觸西方數學,又不敢過問經世致用之學,因而埋頭於究治古籍。乾嘉年間逐漸形成一個以考據學為主的乾嘉學派。

隨著《算經十書》與宋元數學著作的收集與注釋,出現了一個研究傳統數學的高潮。其中能突破舊有框框並有發明創造的有焦循、汪萊、李銳、李善蘭等。他們的工作,和宋元時代的代數學比較是青出於藍而勝於藍的;和西方代數學比較,在時間上晚了一些,但這些成果是在沒有受到西方近代數學的影響下獨立得到的。

與傳統數學研究出現高潮的同時,阮元與李銳等編寫了一部天文數學家傳記—《疇人傳》,收集了從黃帝時期到嘉慶四年已故的天文學家和數學家270餘人(其中有數學著作傳世的不足50人),和明末以來介紹西方天文數學的傳教士41人。這部著作全由「掇拾史書,荃萃群籍,甄而錄之」而成,收集的完全是第一手的原始資料,在學術界頗有影響。

1840年鴉片戰爭以後,西方近代數學開始傳入中國。首先是英人在上海設立墨海書館,介紹西方數學。第二次鴉片戰爭後,曾國藩、李鴻章等官僚集團開展「洋務運動」,也主張介紹和學習西方數學,組織翻譯了一批近代數學著作。

其中較重要的有李善蘭與偉烈亞力翻譯的《代數學》《代微積拾級》;華蘅芳與英人傅蘭雅合譯的《代數術》《微積溯源》《決疑數學》;鄒立文與狄考文編譯的《形學備旨》《代數備旨》《筆算數學》;謝洪賚與潘慎文合譯的《代形合參》《八線備旨》等等。

《代微積拾級》是中國第一部微積分學譯本;《代數學》是英國數學家德·摩根所著的符號代數學譯本;《決疑數學》是第一部概率論譯本。在這些譯著中,創造了許多數學名詞和術語,至今還在應用,但所用數學符號一般已被淘汰了。戊戌變法以後,各地興辦新法學校,上述一些著作便成為主要教科書。

在翻譯西方數學著作的同時,中國學者也進行一些研究,寫出一些著作,較重要的有李善蘭的《《尖錐變法解》《考數根法》;夏彎翔的《洞方術圖解》《致曲術》《致曲圖解》等等,都是會通中西學術思想的研究成果。

由於輸入的近代數學需要一個消化吸收的過程,加上清末統治者十分腐敗,在太平天國運動的沖擊下,在帝國主義列強的掠奪下,焦頭爛額,無暇顧及數學研究。直到1919年五四運動以後,中國近代數學的研究才真正開始。

中國古代數學家——劉徽
劉徽(生於公元250年左右),是中國數學史上一個非常偉大的數學家,在世界數學史上,也佔有傑出的地位.他的傑作《九章算術注》和《海島算經》,是我國最寶貴的數學遺產.
《九章算術》約成書於東漢之初,共有246個問題的解法.在許多方面:如解聯立方程,分數四則運算,正負數運算,幾何圖形的體積面積計算等,都屬於世界先進之列,但因解法比較原始,缺乏必要的證明,而劉徽則對此均作了補充證明.在這些證明中,顯示了他在多方面的創造性的貢獻.他是世界上最早提出十進小數概念的人,並用十進小數來表示無理數的立方根.在代數方面,他正確地提出了正負數的概念及其加減運算的法則;改進了線性方程組的解法.在幾何方面,提出了"割圓術",即將圓周用內接或外切正多邊形窮竭的一種求圓面積和圓周長的方法.他利用割圓術科學地求出了圓周率π=3.14的結果.劉徽在割圓術中提出的"割之彌細,所失彌少,割之又割以至於不可割,則與圓合體而無所失矣",這可視為中國古代極限觀念的佳作.
《海島算經》一書中, 劉徽精心選編了九個測量問題,這些題目的創造性、復雜性和富有代表性,都在當時為西方所矚目.
劉徽思想敏捷,方法靈活,既提倡推理又主張直觀.他是我國最早明確主張用邏輯推理的方式來論證數學命題的人.
劉徽的一生是為數學刻苦探求的一生.他雖然地位低下,但人格高尚.他不是沽名釣譽的庸人,而是學而不厭的偉人,他給我們中華民族留下了寶貴的財富.

中國古代數學家——祖沖之
祖沖之(公元429-500年)是我國南北朝時期,河北省淶源縣人.他從小就閱讀了許多天文、數學方面的書籍,勤奮好學,刻苦實踐,終於使他成為我國古代傑出的數學家、天文學家.
祖沖之在數學上的傑出成就,是關於圓周率的計算.秦漢以前,人們以"徑一周三"做為圓周率,這就是"古率".後來發現古率誤差太大,圓周率應是"圓徑一而周三有餘",不過究竟余多少,意見不一.直到三國時期,劉徽提出了計算圓周率的科學方法--"割圓術",用圓內接正多邊形的周長來逼近圓周長.劉徽計算到圓內接96邊形, 求得π=3.14,並指出,內接正多邊形的邊數越多,所求得的π值越精確.祖沖之在前人成就的基礎上,經過刻苦鑽研,反復演算,求出π在3.1415926與3.1415927之間.並得出了π分數形式的近似值,取22/7為約率,取355/133為密率,其中355/133取六位小數是3.141929,它是分子分母在1000以內最接近π值的分數.祖沖之究竟用什麼方法得出這一結果,現在無從考查.若設想他按劉徽的"割圓術"方法去求的話,就要計算到圓內接16,384邊形,這需要化費多少時間和付出多麼巨大的勞動啊!由此可見他在治學上的頑強毅力和聰敏才智是令人欽佩的.祖沖之計算得出的密率, 外國數學家獲得同樣結果,已是一千多年以後的事了.為了紀念祖沖之的傑出貢獻,有些外國數學史家建議把π=叫做"祖率".
祖沖之博覽當時的名家經典,堅持實事求是,他從親自測量計算的大量資料中對比分析,發現過去歷法的嚴重誤差,並勇於改進,在他三十三歲時編製成功了《大明歷》,開辟了歷法史的新紀元.
祖沖之還與他的兒子祖暅(也是我國著名的數學家)一起,用巧妙的方法解決了球體體積的計算.他們當時採用的一條原理是:"冪勢既同,則積不容異."意即,位於兩平行平面之間的兩個立體,被任一平行於這兩平面的平面所截,如果兩個截面的面積恆相等,則這兩個立體的體積相等.這一原理,在西文被稱為卡瓦列利原理, 但這是在祖氏以後一千多年才由卡氏發現的.為了紀念祖氏父子發現這一原理的重大貢獻,大家也稱這原理為"祖暅原理".

『捌』 數學發展中的重大事件有哪些

無理數的發現

說到無理數的發現,不得不提到數學史上一個著名的定理「畢達哥拉斯定理」,畢達哥拉斯定理的發現本身就是一個大事件,在當時的畢達哥拉斯學派,據說還特意舉行了盛大的慶祝活動。

通過畢達哥拉斯定理,認識到無理數的存在,使得人們對數開始重新思考,甚至引發了數學史上的第一次數學危機。

『玖』 歷史上幾次數學危機分別是什麼

第一次危機發生在公元前580~568年之間的古希臘,數學家畢達哥拉斯建立了畢達哥拉斯學派。這個學派集宗教、科學和哲學於一體,該學派人數固定,知識保密,所有發明創造都歸於學派領袖。當時人們對有理數的認識還很有限,對於無理數的概念更是一無所知,畢達哥拉斯學派所說的數,原來是指整數,他們不把分數看成一種數,而僅看作兩個整數之比,他們錯誤地認為,宇宙間的一切現象都歸結為整數或整數之比。該學派的成員希伯索斯根據勾股定理(西方稱為畢達哥拉斯定理)通過邏輯推理發現,邊長為1的正方形的對角線長度既不是整數,也不是整數的比所能表示。希伯索斯的發現被認為是「荒謬」和違反常識的事。它不僅嚴重地違背了畢達哥拉斯學派的信條,也沖擊了當時希臘人的傳統見解。使當時希臘數學家們深感不安,相傳希伯索斯因這一發現被投入海中淹死,這就是第一次數學危機。
最後,這場危機通過在幾何學中引進不可通約量概念而得到解決。兩個幾何線段,如果存在一個第三線段能同時量盡它們,就稱這兩個線段是可通約的,否則稱為不可通約的。正方形的一邊與對角線,就不存在能同時量盡它們的第三線段,因此它們是不可通約的。很顯然,只要承認不可通約量的存在使幾何量不再受整數的限制,所謂的數學危機也就不復存在了。
我認為第一次危機的產生最大的意義導致了無理數地產生,比如說我們現在說的 , 都無法用 來表示,那麼我們必須引入新的數來刻畫這個問題,這樣無理數便產生了,正是有這種思想,當我們將負數開方時,人們引入了虛數i(虛數的產生導致復變函數等學科的產生,並在現代工程技術上得到廣泛應用),這使我不得不佩服人類的智慧。但我個人認為第一次危機的真正解決在1872年德國數學家對無理數的嚴格定義,因為數學是很強調其嚴格的邏輯與推證性的。

第二次數學危機發生在十七世紀。十七世紀微積分誕生後,由於推敲微積分的理論基礎問題,數學界出現混亂局面,即第二次數學危機。其實我翻了一下有關數學史的資料,微積分的雛形早在古希臘時期就形成了,阿基米德的逼近法實際上已經掌握了無限小分析的基本要素,直到2100年後,牛頓和萊布尼茲開辟了新的天地——微積分。微積分的主要創始人牛頓在一些典型的推導過程中,第一步用了無窮小量作分母進行除法,當然無窮小量不能為零;第二步牛頓又把無窮小量看作零,去掉那些包含它的項,從而得到所要的公式,在力學和幾何學的應用證明了這些公式是正確的,但它的數學推導過程卻在邏輯上自相矛盾.焦點是:無窮小量是零還是非零?如果是零,怎麼能用它做除數?如果不是零,又怎麼能把包含著無窮小量的那些項去掉呢?
直到19世紀,柯西詳細而有系統地發展了極限理論。柯西認為把無窮小量作為確定的量,即使是零,都說不過去,它會與極限的定義發生矛盾。無窮小量應該是要怎樣小就怎樣小的量,因此本質上它是變數,而且是以零為極限的量,至此柯西澄清了前人的無窮小的概念,另外Weistrass創立了 極限理論,加上實數理論,集合論的建立,從而把無窮小量從形而上學的束縛中解放出來,第二次數學危機基本解決。
而我自己的理解是一個無窮小量,是不是零要看它是運動的還是靜止的,如果是靜止的,我們當然認為它可以看為零;如果是運動的,比如說1/n,我們說 ,但n個1/n相乘就為1,這就不是無窮小量了,當我們遇到 等情況時,我們可以用洛比達法則反復求導來考查極限,也可以用Taylor展式展開後,一階一階的比,我們總會在有限階比出大小。

第三次數學危機發生在1902年,羅素悖論的產生震撼了整個數學界,號稱天衣無縫,絕對正確的數學出現了自相矛盾。
我從很早以前就讀過「理發師悖論」 ,就是一位理發師給不給自己理發的人理發。那麼理發師該不該給自己理發呢?還有大家熟悉的「說謊者悖論」,其大體內容是:一個克里特人說:「所有克里特人說的每一句話都是謊話。」試問這句話是真還是假?從數學上來說,這就是羅素悖論的一個具體例子。
羅素在該悖論中所定義的集合R,被幾乎所有集合論研究者都認為是在樸素集合論中可以合法存在的集合。事實雖是這樣但原因卻又是什麼呢?這是由於R是集合,若R含有自身作為元素,就有R R,那麼從集合的角度就有R R。一個集合真包含它自己,這樣的集合顯然是不存在的。因為既要R有異於R的元素,又要R與R是相同的,這顯然是不可能的。因此,任何集合都必須遵循R R的基本原則, 否則就是不合法的集合。這樣看來,羅素悖論中所定義的一切R R的集合,就應該是一切合法集合的集合,也就是所有集合的集合,這就是同類事物包含所有的同類事物,必會引出最大的這類事物。歸根結底,R也就是包含一切集合的「最大的集合」了。因此可以明確了,實質上,羅素悖論就是一個以否定形式陳述的最大集合悖論。
從此,數學家們就開始為這場危機尋找解決的辦法,其中之一是把集合論建立在一組 公理之上,以迴避悖論。首先進行這個工作的是德國數學家策梅羅,他提出七條公理,建立了一種不會產生悖論的集合論,又經過德國的另一位數學家弗芝克爾的改進,形成了一個無矛盾的集合論公理系統(即所謂ZF公理系統),這場數學危機到此緩和下來。
現在,我們通過離散數學的學習,知道集合論主要分為Cantor集合論和Axiomatic集合論,集合是先定義了全集I,空集 ,在經過一系列一元和二元運算而得來得。而在七條公理上建立起來的集合論系統避開了羅素悖論,使現代數學得以發展。
參考http://..com/question/9597856.html?mzl=qb_xg_0&mzl_jy=0&word=%E5%8E%86%E5%8F%B2%E4%B8%8A%E5%87%A0%E6%AC%A1%E6%95%B0%E5%AD%A6%E5%8D%B1%E6%9C%BA%E5%88%86%E5%88%AB%E6%98%AF%E4%BB%80%E4%B9%88?&hitRelateOptimi=&ad_test=22&test_relate_click=&qb_appasp=2&uid=wapp_1405084924054_514&step=2

『拾』 17世紀前後數學發展中的重大事件

17世紀前後,世界著名的數學家有:開普勒,笛卡兒,費爾馬,牛頓,萊布尼茨,歐拉等.期間最重要的事莫過於<微積分>的產生了.
十七世紀後半葉,牛頓和萊布尼茨完成了許多數學家都參加過准備的工作,分別獨立地建立了微積分學。他們建立微積分的出發點是直觀的無窮小量,理論基礎是不牢固的。直到十九世紀,柯西和維爾斯特拉斯建立了極限理論,康托爾等建立了嚴格的實數理論,這門學科才得以嚴密化。
微積分是與實際應用聯系著發展起來的,它在天文學、力學、化學、生物學、工程學、經濟學等自然科學、社會科學及應用科學等多個分支中,有越來越廣泛的應用。特別是計算機的發明更有助於這些應用的不斷發展。
客觀世界的一切事物,小至粒子,大至宇宙,始終都在運動和變化著。因此在數學中引入了變數的概念後,就有可能把運動現象用數學來加以描述了。
由於函數概念的產生和運用的加深,也由於科學技術發展的需要,一門新的數學分支就繼解析幾何之後產生了,這就是微積分學。微積分學這門學科在數學發展中的地位是十分重要的,可以說它是繼歐氏幾何後,全部數學中的最大的一個創造。

閱讀全文

與歷史中重大數學問題有哪些方面相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:705
乙酸乙酯化學式怎麼算 瀏覽:1372
沈陽初中的數學是什麼版本的 瀏覽:1318
華為手機家人共享如何查看地理位置 瀏覽:1010
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:848
數學c什麼意思是什麼意思是什麼 瀏覽:1371
中考初中地理如何補 瀏覽:1260
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:671
數學奧數卡怎麼辦 瀏覽:1351
如何回答地理是什麼 瀏覽:989
win7如何刪除電腦文件瀏覽歷史 瀏覽:1023
大學物理實驗干什麼用的到 瀏覽:1449
二年級上冊數學框框怎麼填 瀏覽:1659
西安瑞禧生物科技有限公司怎麼樣 瀏覽:834
武大的分析化學怎麼樣 瀏覽:1213
ige電化學發光偏高怎麼辦 瀏覽:1301
學而思初中英語和語文怎麼樣 瀏覽:1608
下列哪個水飛薊素化學結構 瀏覽:1388
化學理學哪些專業好 瀏覽:1453
數學中的棱的意思是什麼 瀏覽:1017