A. 山東高二數學學哪幾本書
高二數學文理科學的課本不同,全國各地都有差異,但大致如下:理科:必修2(解析幾何初步與立體幾何)、選修2-1(圓錐曲線)、選修2-2(分類記數原理)、選修2-3(排列組合) 文科:必修2(解析幾何初步與立體幾何)、選修1-1(平面幾何)、選修1-2(記數原理)
B. 高二下學期數學學什麼
高二下學期數學學立體幾何、二項式定理、概率初步等有關內容。
具體內容包括《集合與函數》、《三角函數》、《不等式》、《數列》、《復數》、《排列組合、二項式定理》、《立體幾何》、《平面解析幾何》等部分。
必修課程是整個高中數學課程的基礎,包括5個模塊,共10學分,是所有學生都要學習的內容。
相關信息介紹:
高中數學學習是中學階段承前啟後的關鍵時期,不少學生升入高中後,能否適應高中數學的學習,如何才能學好高中數學,這對於高中生來說是一個急需解決的問題。
數學運算是學好數學的基本功,初中階段是培養數學運算能力的黃金時期,初中代數的主要內容都和運算有關,如有理數的運算、整式的運算、因式分解、分式的運算、根式的運算和解方程,初中運算能力不過關,會直接影響高中數學的學習。
C. 高二數學要學哪些知識點
縱觀古今中外,許多有成就的偉人所取得的成績,無不是靠自己的勤奮而得來的。你說不是呀?我們作為一名高中學生,要想取得好成績,不也要勤奮學習嗎?以下是我給大家整理的 高二數學 的知識點,希望大家能夠喜歡!
高二數學知識點1
分層抽樣
先將總體中的所有單位按照某種特徵或標志(性別、年齡等)劃分成若干類型或層次,然後再在各個類型或層次中採用簡單隨機抽樣或系用抽樣的辦法抽取一個子樣本,最後,將這些子樣本合起來構成總體的樣本。
兩種 方法
1.先以分層變數將總體劃分為若干層,再按照各層在總體中的比例從各層中抽取。
2.先以分層變數將總體劃分為若干層,再將各層中的元素按分層的順序整齊排列,最後用系統抽樣的方法抽取樣本。
2.分層抽樣是把異質性較強的總體分成一個個同質性較強的子總體,再抽取不同的子總體中的樣本分別代表該子總體,所有的樣本進而代表總體。
分層標准
(1)以調查所要分析和研究的主要變數或相關的變數作為分層的標准。
(2)以保證各層內部同質性強、各層之間異質性強、突出總體內在結構的變數作為分層變數。
(3)以那些有明顯分層區分的變數作為分層變數。
分層的比例問題
(1)按比例分層抽樣:根據各種類型或層次中的單位數目占總體單位數目的比重來抽取子樣本的方法。
(2)不按比例分層抽樣:有的層次在總體中的比重太小,其樣本量就會非常少,此時採用該方法,主要是便於對不同層次的子總體進行專門研究或進行相互比較。如果要用樣本資料推斷總體時,則需要先對各層的數據資料進行加權處理,調整樣本中各層的比例,使數據恢復到總體中各層實際的比例結構。
高二數學知識點2
1.幾何概型的定義:如果每個事件發生的概率只與構成該事件區域的長度(面積或體積)成比例,則稱這樣的概率模型為幾何概率模型,簡稱幾何概型。
2.幾何概型的概率公式:P(A)=構成事件A的區域長度(面積或體積);
試驗的全部結果所構成的區域長度(面積或體積)
3.幾何概型的特點:1)試驗中所有可能出現的結果(基本事件)有無限多個;2)每個基本事件出現的可能性相等.
4.幾何概型與古典概型的比較:一方面,古典概型具有有限性,即試驗結果是可數的;而幾何概型則是在試驗中出現無限多個結果,且與事件的區域長度(或面積、體積等)有關,即試驗結果具有無限性,是不可數的。這是二者的不同之處;另一方面,古典概型與幾何概型的試驗結果都具有等可能性,這是二者的共性。
通過以上對於幾何概型的基本知識點的梳理,我們不難看出其要核是:要抓住幾何概型具有無限性和等可能性兩個特點,無限性是指在一次試驗中,基本事件的個數可以是無限的,這是區分幾何概型與古典概型的關鍵所在;等可能性是指每一個基本事件發生的可能性是均等的,這是解題的基本前提。因此,用幾何概型求解的概率問題和古典概型的基本思路是相同的,同屬於「比例法」,即隨機事件A的概率可以用「事件A包含的基本事件所佔的圖形的長度、面積(體積)和角度等」與「試驗的基本事件所佔總長度、面積(體積)和角度等」之比來表示。下面就幾何概型常見類型題作一歸納梳理。
高二數學知識點3
一、不等式的性質
1.兩個實數a與b之間的大小關系
2.不等式的性質
(4)(乘法單調性)
3.絕對值不等式的性質
(2)如果a>0,那麼
(3)|a?b|=|a|?|b|.
(5)|a|-|b|≤|a±b|≤|a|+|b|.
(6)|a1+a2+……+an|≤|a1|+|a2|+……+|an|.
二、不等式的證明
1.不等式證明的依據
(2)不等式的性質(略)
(3)重要不等式:①|a|≥0;a2≥0;(a-b)2≥0(a、b∈R)
②a2+b2≥2ab(a、b∈R,當且僅當a=b時取「=」號)
2.不等式的證明方法
(1)比較法:要證明a>b(a0(a-b<0),這種證明不等式的方法叫做比較法.
用比較法證明不等式的步驟是:作差——變形——判斷符號.
(2)綜合法:從已知條件出發,依據不等式的性質和已證明過的不等式,推導出所要證明的不等式成立,這種證明不等式的方法叫做綜合法.
(3)分析法:從欲證的不等式出發,逐步分析使這不等式成立的充分條件,直到所需條件已判斷為正確時,從而斷定原不等式成立,這種證明不等式的方法叫做分析法.
證明不等式除以上三種基本方法外,還有反證法、數學歸納法等.
高二數學要學哪些知識點相關 文章 :
★ 高二數學知識點總結
★ 高二數學重要知識點歸納
★ 高二數學考點知識點總結復習大綱
★ 高二數學知識點歸納總結
★ 高二數學上下學期知識點復習提綱
★ 高二數學必背知識點總結
★ 高二數學知識點全總結
★ 高二數學知識點最新歸納
★ 高二數學知識點整理
★ 高二數學考試必考知識點
D. 高二數學學什麼內容
內容包括《集合與函數》《三角函數》《不等式》《數列》《復數》《排列、組合、二項式定理》《立體幾何》《平面解析幾何》等部分。必修課程是整個高中數學課程的基礎,包括5個模塊,共10學分,是所有學生都要學習的內容。5個模塊的內容為:
數學1:集合、函數概念與基本初等函數I(指數函數、對數函數、冪函數)。
數學2:立體幾何初步、平面解析幾何初步。
數學3:演算法初步、統計、概率。
數學4:基本初等函數II(三角函數)、平面向量、三角恆等變換
數學5:解三角形、數列、不等式。
高中數學課程性質
高中數學課程對於認識數學與自然界、數學與人類社會的關系,認識數學的科學價值、文化價值,提高提出問題、分析和解決問題的能力,形成理性思維,發展智力和創新意識具有基礎性的作用。
高中數學課程有助於學生認識數學的應用價值,增強應用意識,形成解決簡單實際問題的能力。高中數學課程是學習高中物理、化學、技術等課程和進一步學習的基礎。為學生的終身發展,形成科學的世界觀、價值觀奠定基礎,對提高全民族素質具有重要意義。
以上內容參考網路-高中數學
以上內容參考網路-高中數學課程標准
E. 新教材高二上學期數學內容是什麼
高二數學必修和和選修內容:
第一部分:不等式
1、選修4-5:
不等式選講
2、選修2-2:
第一章推理與證明
3、必修5:
第三章不等式
第二部分:解析幾何
1、選修4-4:
坐標系與參數方程
2、選修2-1:
第三章圓錐曲線與方程
3、必修2:
第二章解析幾何初步
第一部分:不等式
1、選修4-5:
不等式選講
第一章不等關系與基本不等式
第二章幾個重要不等式
2、選修2-2:
第一章推理與證明
(1)綜合法與分析法
(2)反證法
(3)數學歸納法
3、必修5:
第三章不等式
(1)不等關系
(2)一元二次不等式
(3)基本不等式
點擊查看:高二數學復習八大法則
第二部分:解析幾何
1、選修4-4:
坐標系與參數方程
第一章坐標系
第二章參數方程
2、選修2-1:
第三章圓錐曲線與方程
(1)橢圓
(2)拋物線
(3)雙曲線
(4)曲線與方程
(5)圓錐曲線的共同特徵
(6)直線與圓錐曲線的交點
3、必修2:
第二章解析幾何初步
(1)直線與直線的方程
(2)圓與圓的方程
(3)空間直角坐標系
F. 新課改高二數學學哪方面內容
我是安徽的
高二必修學的是必修2(立體幾何、解析幾何——直線、圓)
選修學的是選修2-1(命題與推理、圓錐曲線——橢圓、雙曲線、拋物線、平面直角坐標系)、選修2-2(導數——導函數及微積分、推理與證明)、選修2-3(排列組合、概率一類的)
G. 高二數學學什麼
高二數學要學的內容有解析幾何、推理與證明、復數、二項式、空間向量、圓錐曲線與方程、不等式等,常考的知識點有直線的斜率、兩直線平行與垂直、兩條直線的交點、兩點間距離公式等。
H. 高二數學內容有哪些
高二數學內容有:
1、《集合與函數》。
2、《三角函數》。
3、《不等式》。
4、《數列》。
5、《復數》。
6、《排列、組合、二項式定理》。
7、《立體幾何》。
8、《平面解析幾何》。
高中數學提高成績的方法有:
1、提高高中數學成績最重要的一點就是課前預習
上課之前把要上的內容都預習一下,看一下課本要求,把重點和難理解的都標記出來,等著老師上課講。這樣一來,上課目前明確,由於心中有疑問,等著老師解答,上課的時候自然而然的就集中注意力跟著老師的思路走了。
2、提高數學成績還要做到上課認真聽講
所以高中生如果想提高數學成績,上課一定要全神貫注的聽講,老師講到課本上沒有的內容、或者經典例題的詳細解題過程都動筆記一下,免得上課沒聽明白,想復習的時候又找不到。