1. 數學建模的方法有哪些
這是網上來的,寫得還不錯:
要重點突破:
1 預測模塊:灰色預測、時間序列預測、神經網路預測、曲線擬合(線性回歸);
2 歸類判別:歐氏距離判別、fisher判別等 ;
3 圖論:最短路徑求法 ;
4 最優化:列方程組 用lindo 或 lingo軟體解 ;
5 其他方法:層次分析法 馬爾可夫鏈 主成分析法 等 ;
6 用到軟體:matlab lindo (lingo) excel ;
7 比賽前寫幾篇數模論文。
這是每年參賽的賽提以及獲獎作品的解法,你自己估量著吧……
賽題 解法
93A非線性交調的頻率設計 擬合、規劃
93B足球隊排名 圖論、層次分析、整數規劃
94A逢山開路 圖論、插值、動態規劃
94B鎖具裝箱問題 圖論、組合數學
95A飛行管理問題 非線性規劃、線性規劃
95B天車與冶煉爐的作業調度 動態規劃、排隊論、圖論
96A最優捕魚策略 微分方程、優化
96B節水洗衣機 非線性規劃
97A零件的參數設計 非線性規劃
97B截斷切割的最優排列 隨機模擬、圖論
98A一類投資組合問題 多目標優化、非線性規劃
98B災情巡視的最佳路線 圖論、組合優化
99A自動化車床管理 隨機優化、計算機模擬
99B鑽井布局 0-1規劃、圖論
00A DNA序列分類 模式識別、Fisher判別、人工神經網路
00B鋼管訂購和運輸 組合優化、運輸問題
01A血管三維重建 曲線擬合、曲面重建
01B 工交車調度問題 多目標規劃
02A車燈線光源的優化 非線性規劃
02B彩票問題 單目標決策
03A SARS的傳播 微分方程、差分方程
03B 露天礦生產的車輛安排 整數規劃、運輸問題
04A奧運會臨時超市網點設計 統計分析、數據處理、優化
04B電力市場的輸電阻塞管理 數據擬合、優化
05A長江水質的評價和預測 預測評價、數據處理
05B DVD在線租賃 隨機規劃、整數規劃
演算法的設計的好壞將直接影響運算速度的快慢,建議多用數學軟體(
Mathematice,Matlab,Maple, Mathcad,Lindo,Lingo,SAS 等),這里提供十種數學
建模常用演算法,僅供參考:
1、 蒙特卡羅演算法(該演算法又稱隨機性模擬演算法,是通過計算機模擬來解決
問題的演算法,同時可以通過模擬可以來檢驗自己模型的正確性,是比賽時必
用的方法)
2、數據擬合、參數估計、插值等數據處理演算法(比賽中通常會遇到大量的數
據需要處理,而處理數據的關鍵就在於這些演算法,通常使用Matlab 作為工具)
3、線性規劃、整數規劃、多元規劃、二次規劃等規劃類問題(建模競賽大多
數問題屬於最優化問題,很多時候這些問題可以用數學規劃演算法來描述,通
常使用Lindo、Lingo 軟體實現)
4、圖論演算法(這類演算法可以分為很多種,包括最短路、網路流、二分圖等算
法,涉及到圖論的問題可以用這些方法解決,需要認真准備)
5、動態規劃、回溯搜索、分治演算法、分支定界等計算機演算法(這些演算法是算
法設計中比較常用的方法,很多場合可以用到競賽中)
6、最優化理論的三大非經典演算法:模擬退火法、神經網路、遺傳演算法(這些
問題是用來解決一些較困難的最優化問題的演算法,對於有些問題非常有幫助,
但是演算法的實現比較困難,需慎重使用)
7、網格演算法和窮舉法(網格演算法和窮舉法都是暴力搜索最優點的演算法,在很
多競賽題中有應用,當重點討論模型本身而輕視演算法的時候,可以使用這種
暴力方案,最好使用一些高級語言作為編程工具)
8、一些連續離散化方法(很多問題都是實際來的,數據可以是連續的,而計
算機只認的是離散的數據,因此將其離散化後進行差分代替微分、求和代替
積分等思想是非常重要的)
9、數值分析演算法(如果在比賽中採用高級語言進行編程的話,那一些數值分
析中常用的演算法比如方程組求解、矩陣運算、函數積分等演算法就需要額外編
寫庫函數進行調用)
10、圖象處理演算法(賽題中有一類問題與圖形有關,即使與圖形無關,論文
中也應該要不乏圖片的,這些圖形如何展示以及如何處理就是需要解決的問
題,通常使用Matlab 進行處理)
2. 參加數學建模有哪些必學的演算法
1. 蒙特卡洛方法:
又稱計算機隨機性模擬方法,也稱統計實驗方法。可以通過模擬來檢驗自己模型的正確性。
2. 數據擬合、參數估計、插值等數據處理
比賽中常遇到大量的數據需要處理,而處理的數據的關鍵就在於這些方法,通常使用matlab輔助,與圖形結合時還可處理很多有關擬合的問題。
3. 規劃類問題演算法:
包括線性規劃、整數規劃、多元規劃、二次規劃等;競賽中又很多問題都和規劃有關,可以說不少的模型都可以歸結為一組不等式作為約束條件,幾個函數表達式作為目標函數的問題,這類問題,求解是關鍵。
這類問題一般用lingo軟體就能求解。
4. 圖論問題:
主要是考察這類問題的演算法,包括:Dijkstra、Floyd、Prime、Bellman-Ford,最大流、二分匹配等。熟悉ACM的人來說,應該都不難。
5. 計算機演算法設計中的問題:
演算法設計包括:動態規劃、回溯搜索、分治、分支定界法(求解整數解)等。
6. 最優化理論的三大非經典演算法:
a) 模擬退火法(SA)
b) 神經網路(NN)
c) 遺傳演算法(GA)
7. 網格演算法和窮舉演算法
8. 連續問題離散化的方法
因為計算機只能處理離散化的問題,但是實際中數據大多是連續的,因此需要將連續問題離散化之後再用計算機求解。
如:差分代替微分、求和代替積分等思想都是把連續問題離散化的常用方法。
9. 數值分析方法
主要研究各種求解數學問題的數值計算方法,特別是適用於計算機實現的方法與演算法。
包括:函數的數值逼近、數值微分與數值積分、非線性返程的數值解法、數值代數、常微分方程數值解等。
主要應用matlab進行求解。
10. 圖像處理演算法
這部分主要是使用matlab進行圖像處理。
包括展示圖片,進行問題解決說明等。
3. 求,數學建模十大演算法
數學建模的十大演算法
1、蒙特卡羅演算法(該演算法又稱隨機性模擬演算法,是通過計算機模擬來解決問題的演算法,
同時可以通過模擬可以來檢驗自己模型的正確性,是比賽時必用的方法)
2、數據擬合、參數估計、插值等數據處理演算法(比賽中通常會遇到大量的數據需要處理,
而處理數據的關鍵就在於這些演算法,通常使用Matlab作為工具)
3、線性規劃、整數規劃、多元規劃、二次規劃等規劃類問題(建模競賽大多數問題屬於最優化問題,
很多時候這些問題可以用數學規劃演算法來描述,通常使用Lindo、Lingo軟體實現)
4、圖論演算法(這類演算法可以分為很多種,包括最短路、網路流、二分圖等演算法,
涉及到圖論的問題可以用這些方法解決,需要認真准備)
5、動態規劃、回溯搜索、分治演算法、分支定界等計算機演算法(這些演算法是演算法設計中比較常用的方法,
很多場合可以用到競賽中)
6、最優化理論的三大非經典演算法:模擬退火法、神經網路、遺傳演算法
(這些問題是用來解決一些較困難的最優化問題的演算法,對於有些問題非常有幫助,
但是演算法的實現比較困難,需慎重使用)
7、網格演算法和窮舉法(網格演算法和窮舉法都是暴力搜索最優點的演算法,在很多競賽題中有應用,
當重點討論模型本身而輕視演算法的時候,可以使用這種暴力方案,最好使用一些高級語言作為編程工具)
8、一些連續離散化方法(很多問題都是實際來的,數據可以是連續的,而計算機只認的是離散的數據,
因此將其離散化後進行差分代替微分、求和代替積分等思想是非常重要的)
9、數值分析演算法(如果在比賽中採用高級語言進行編程的話,那一些數值分析中常用的演算法比
如方程組求解、矩陣運算、函數積分等演算法就需要額外編寫庫函數進行調用)
10、圖象處理演算法(賽題中有一類問題與圖形有關,即使與圖形無關,論文中也應該要不乏圖片的,
這些圖形如何展示以及如何處理就是需要解決的問題,通常使用Matlab進行處理)
4. 數學建模和演算法是一個概念嗎他們之間究竟是什麼關系
數學模型就是對於一個特定的對象為了一個特定目標,根據特有的內在規律,做出一些必要的簡化假設,運用適當的數學工具,得到的一個數學結構。數學結構可以是數學公式,
演算法
、表格、圖示等。
所以演算法只是數學建模中的一部分
5. 數學建模 什麼意思
數學建模的詳細定義網上多的我就不闡述了,說一點其他的~~
數學的主要發展方向是數學結合計算機。運用數學的演算法結合計算機技術解決實際問題,將來你會比單純學計算機的水平高出一個檔次,因為你的演算法比他們的先進。而這也就是數學建模競賽的主要考察的。
數模比賽的含金量也是比較高的,你參加比賽得了名次,完全可以證明你是有一定實力的~~
你擔心數學成績不好,其實是沒有必要的,我參加過幾次比賽,用的數學知識並沒有很高深,高中數學也能解決很多問題了,主要就是優化,模擬,我覺得考驗個人思維能力多一點,況且數學、計算機、寫作三個方面呢,你只要有一方面特長就可以了~~
如果你去參加比賽,真的會給你很多收獲,學到很多新知識不談,還會讓你了解原來學的東西可以這么用在生活中,會提起學習的興趣,真的,我強烈建議你去學一些~~參加比賽~~如果還有其他問題你可以問的呵呵~~~我建模和寫作都弄過,編程差點~~
6. 數學建模中的數學模型和演算法有什麼關系,怎樣理解它們之間的聯系和區別
模型是將抽象的實際問題轉化成數學問題,用便於理解和計算的數學模型表示,通俗的說可以把模型理解為計算公式,常見數學定義定理等,演算法即計算方法,是求解數學模型用的,就是將模型解出的方法。總之,模型是將實際問題數學化,演算法是將其中所蘊含的數學問題進行求解,謝謝。
7. 常見30種數學建模模型是什麼
1、蒙特卡羅演算法。
2、數據擬合、參數估計、插值等數據處理演算法。
3、線性規劃、整數規劃、多元規劃、二次規劃等規劃類問題。
4、圖論演算法。
5、動態規劃、回溯搜索、分治演算法、分支定界等計算機演算法。
6、最優化理論的三大非經典演算法。
7、網格演算法和窮舉法。
8、一些連續離散化方法。
9、數值分析演算法。
10、圖象處理演算法。
應用數學去解決各類實際問題時,建立數學模型是十分關鍵的一步,同時也是十分困難的一步。建立教學模型的過程,是把錯綜復雜的實際問題簡化、抽象為合理的數學結構的過程。
要通過調查、收集數據資料,觀察和研究實際對象的固有特徵和內在規律,抓住問題的主要矛盾,建立起反映實際問題的數量關系,然後利用數學的理論和方法去分析和解決問題。
(7)數學建模演算法指什麼擴展閱讀:
數學建模是一個讓純粹數學家(指只研究數學,而不關心數學在實際中的應用的數學家)變成物理學家、生物學家、經濟學家甚至心理學家等等的過程。這里的實際現象既包涵具體的自然現象比如自由落體現象,也包含抽象的現象比如顧客對某種商品所取的價值傾向。這里的描述不但包括外在形態、內在機制的描述,也包括預測、試驗和解釋實際現象等內容。
8. 數學建模中,模型是不是演算法
模型是對現實世界中具體問題(現象)的數學描述,可能通過一個或多個數學公式來描述一它。
演算法則是解決這個問題(模型)的具體的過程。
打個比方:解決某個問題的數學描述是S=1+2+3+...+n,這個為模型
演算法:1.依次計算1+2+3+...+n
2.使用公式n*(n+1)/2計算
3.使用首尾相加*2 + 中間數方式計算
9. 數學建模裡面的模型和演算法有啥區別
模型是一個或者一系列的數學表達式,用來描述所要解決的問題。演算法是解決這個模型,也就是這些表達式的具體過程,常常結合編程解決。