① 小學數學圖形移動的概念和步驟是什麼
(1)平移的定義:在平面內,將一個圖形整體沿某一方向由一個位置平移到另一個位置,圖形的這種移動,叫做平移變換,簡稱平移,平移前後互相重合的點叫做對應點。
(2)平移的性質:
①對應點的連線平行(或共線)且相等
②對應線段平行(或共線)且相等,平移前後的兩條對應線段的四個端點所圍成的四邊形為平行四邊形(四個端點共線除外)
③對應角相等,對應角兩邊分別平行,且方向一致。
(3)用坐標表示平移:如果把一個圖形各個點的橫坐標都加上(或減去)一個正數a,縱坐標不變,相應的新圖形就是把原圖形向右(或向左)平移a個單位長;如果把一個圖形各個點的縱坐標都加上(或減去)一個正數a,橫坐標不變,相應的新圖形就是把原圖形向上(或向下)平移a個單位長。
(4)平移的條件:圖形的原來位置、方向、距離
(5)平移作圖的步驟和方法:將原圖形的各個特徵點按規定的方向平移,得到相應的對稱點,再將各對稱點進行相應連接,即得到平移後的圖形,方法有如下三種:平行線法、對應點連線法、全等圖形法。
(來源
圖形的平移定義_中考網
http://www.zhongkao.com/e/20121112/50a0db7e498be.shtml
)
② 會數學的進來瞧一瞧!!什麼叫數軸上的對應數點c的對應數是6,這說明他是就是4嗎還是說明其他神馬
數軸上的對應數就是一個數在數軸上的所對應的點,如1的對應點位數軸上的1
點c的對應點為六,那他就為六,說明他為正數。
如果我的回答對你有幫助,請採納!
③ 八年級上冊數學定義總結人教版
1 全等三角形的對應邊、對應角相等
2邊角邊公理(SAS) 有兩邊和它們的夾角對應相等的兩個三角形全等
3 角邊角公理( ASA)有兩角和它們的夾邊對應相等的兩個三角形全等
4 推論(AAS) 有兩角和其中一角的對邊對應相等的兩個三角形全等
5 邊邊邊公理(SSS) 有三邊對應相等的兩個三角形全等
6 斜邊、直角邊公理(HL) 有斜邊和一條直角邊對應相等的兩個直角三角形全等
7 定理1 在角的平分線上的點到這個角的兩邊的距離相等
8 定理2 到一個角的兩邊的距離相同的點,在這個角的平分線上
9 角的平分線是到角的兩邊距離相等的所有點的集合
10 等腰三角形的性質定理 等腰三角形的兩個底角相等 (即等邊對等角)
21 推論1 等腰三角形頂角的平分線平分底邊並且垂直於底邊
22 等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合
23 推論3 等邊三角形的各角都相等,並且每一個角都等於60°
24 等腰三角形的判定定理 如果一個三角形有兩個角相等,那麼這兩個角所對的邊也相等(等角對等邊)
25 推論1 三個角都相等的三角形是等邊三角形
26 推論 2 有一個角等於60°的等腰三角形是等邊三角形
27 在直角三角形中,如果一個銳角等於30°那麼它所對的直角邊等於斜邊的一半
28 直角三角形斜邊上的中線等於斜邊上的一半
29 定理 線段垂直平分線上的點和這條線段兩個端點的距離相等
30 逆定理 和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上
31 線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合
32 定理1 關於某條直線對稱的兩個圖形是全等形
33 定理 2 如果兩個圖形關於某直線對稱,那麼對稱軸是對應點連線的垂直平分線
34定理3 兩個圖形關於某直線對稱,如果它們的對應線段或延長線相交,那麼交點在對稱軸上
35逆定理 如果兩個圖形的對應點連線被同一條直線垂直平分,那麼這兩個圖形關於這條直線對稱
36勾股定理 直角三角形兩直角邊a、b的平方和、等於斜邊c的平方,即a^2+b^2=c^2
37勾股定理的逆定理 如果三角形的三邊長a、b、c有關系a^2+b^2=c^2 ,那麼這個三角形是直角三角形
38定理 四邊形的內角和等於360°
39四邊形的外角和等於360°
40多邊形內角和定理 n邊形的內角的和等於(n-2)×180°
41推論 任意多邊的外角和等於360°
42平行四邊形性質定理1 平行四邊形的對角相等
43平行四邊形性質定理2 平行四邊形的對邊相等
44推論 夾在兩條平行線間的平行線段相等
45平行四邊形性質定理3 平行四邊形的對角線互相平分
46平行四邊形判定定理1 兩組對角分別相等的四邊形是平行四邊形
47平行四邊形判定定理2 兩組對邊分別相等的四邊形是平行四邊形
48平行四邊形判定定理3 對角線互相平分的四邊形是平行四邊形
49平行四邊形判定定理4 一組對邊平行相等的四邊形是平行四邊形
50矩形性質定理1 矩形的四個角都是直角
51矩形性質定理2 矩形的對角線相等
52矩形判定定理1 有三個角是直角的四邊形是矩形
53矩形判定定理2 對角線相等的平行四邊形是矩形
54菱形性質定理1 菱形的四條邊都相等
55菱形性質定理2 菱形的對角線互相垂直,並且每一條對角線平分一組對角
56菱形面積=對角線乘積的一半,即S=(a×b)÷2
57菱形判定定理1 四邊都相等的四邊形是菱形
58菱形判定定理2 對角線互相垂直的平行四邊形是菱形
59正方形性質定理1 正方形的四個角都是直角,四條邊都相等
60正方形性質定理2正方形的兩條對角線相等,並且互相垂直平分,每條對角線平分一組對角
61定理1 關於中心對稱的兩個圖形是全等的
62定理2 關於中心對稱的兩個圖形,對稱點連線都經過對稱中心,並且被對稱中心平分
63逆定理 如果兩個圖形的對應點連線都經過某一點,並且被這一
點平分,那麼這兩個圖形關於這一點對稱
64等腰梯形性質定理 等腰梯形在同一底上的兩個角相等
65等腰梯形的兩條對角線相等
66等腰梯形判定定理 在同一底上的兩個角相等的梯形是等腰梯形
67對角線相等的梯形是等腰梯形
68平行線等分線段定理 如果一組平行線在一條直線上截得的線段
相等,那麼在其他直線上截得的線段也相等
69 推論1 經過梯形一腰的中點與底平行的直線,必平分另一腰
70 推論2 經過三角形一邊的中點與另一邊平行的直線,必平分第
三邊
71 三角形中位線定理 三角形的中位線平行於第三邊,並且等於它
的一半
72 梯形中位線定理 梯形的中位線平行於兩底,並且等於兩底和的
一半 L=(a+b)÷2 S=L×h
73 (1)比例的基本性質 如果a:b=c:d,那麼ad=bc
如果ad=bc,那麼a:b=c:d
74 (2)合比性質 如果a/b=c/d,那麼(a±b)/b=(c±d)/d
75 (3)等比性質 如果a/b=c/d=…=m/n(b+d+…+n≠0),那麼
(a+c+…+m)/(b+d+…+n)=a/b
76 平行線分線段成比例定理 三條平行線截兩條直線,所得的對應
線段成比例
77 推論 平行於三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應線段成比例
78 定理 如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,那麼這條直線平行於三角形的第三邊
79 平行於三角形的一邊,並且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對應成比例
80 定理 平行於三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似
81 相似三角形判定定理1 兩角對應相等,兩三角形相似(ASA)
82 直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似
83 判定定理2 兩邊對應成比例且夾角相等,兩三角形相似(SAS)
84 判定定理3 三邊對應成比例,兩三角形相似(SSS)
85 定理 如果一個直角三角形的斜邊和一條直角邊與另一個直角三
角形的斜邊和一條直角邊對應成比例,那麼這兩個直角三角形相似
86 性質定理1 相似三角形對應高的比,對應中線的比與對應角平
分線的比都等於相似比
87 性質定理2 相似三角形周長的比等於相似比
88 性質定理3 相似三角形面積的比等於相似比的平方
89 任意銳角的正弦值等於它的餘角的餘弦值,任意銳角的餘弦值等
於它的餘角的正弦值
90任意銳角的正切值等於它的餘角的餘切值,任意銳角的餘切值等
於它的餘角的正切值
91圓是定點的距離等於定長的點的集合
92圓的內部可以看作是圓心的距離小於半徑的點的集合
93圓的外部可以看作是圓心的距離大於半徑的點的集合
94同圓或等圓的半徑相等
95到定點的距離等於定長的點的軌跡,是以定點為圓心,定長為半
徑的圓
96和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直
平分線
97到已知角的兩邊距離相等的點的軌跡,是這個角的平分線
98到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距
離相等的一條直線
99定理 不在同一直線上的三點確定一個圓。
100垂徑定理 垂直於弦的直徑平分這條弦並且平分弦所對的兩條弧
101推論1 ①平分弦(不是直徑)的直徑垂直於弦,並且平分弦所對的兩條弧
②弦的垂直平分線經過圓心,並且平分弦所對的兩條弧
③平分弦所對的一條弧的直徑,垂直平分弦,並且平分弦所對的另一條弧
102推論2 圓的兩條平行弦所夾的弧相等
103圓是以圓心為對稱中心的中心對稱圖形
104定理 在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦
相等,所對的弦的弦心距相等
105推論 在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩
弦的弦心距中有一組量相等那麼它們所對應的其餘各組量都相等
106定理 一條弧所對的圓周角等於它所對的圓心角的一半
107推論1 同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等
108推論2 半圓(或直徑)所對的圓周角是直角;90°的圓周角所
對的弦是直徑
109推論3 如果三角形一邊上的中線等於這邊的一半,那麼這個三角形是直角三角形
110定理 圓的內接四邊形的對角互補,並且任何一個外角都等於它
的內對角
111①直線L和⊙O相交 d<r
②直線L和⊙O相切 d=r
③直線L和⊙O相離 d>r
112切線的判定定理 經過半徑的外端並且垂直於這條半徑的直線是圓的切線
113切線的性質定理 圓的切線垂直於經過切點的半徑
114推論1 經過圓心且垂直於切線的直線必經過切點
115推論2 經過切點且垂直於切線的直線必經過圓心
116切線長定理 從圓外一點引圓的兩條切線,它們的切線長相等,
圓心和這一點的連線平分兩條切線的夾角
117圓的外切四邊形的兩組對邊的和相等
118弦切角定理 弦切角等於它所夾的弧對的圓周角
119推論 如果兩個弦切角所夾的弧相等,那麼這兩個弦切角也相等
120相交弦定理 圓內的兩條相交弦,被交點分成的兩條線段長的積
相等
121推論 如果弦與直徑垂直相交,那麼弦的一半是它分直徑所成的
兩條線段的比例中項
122切割線定理 從圓外一點引圓的切線和割線,切線長是這點到割
線與圓交點的兩條線段長的比例中項
123推論 從圓外一點引圓的兩條割線,這一點到每條割線與圓的交點的兩條線段長的積相等
124如果兩個圓相切,那麼切點一定在連心線上
125①兩圓外離 d>R+r ②兩圓外切 d=R+r
③兩圓相交 R-r<d<R+r(R>r)
④兩圓內切 d=R-r(R>r) ⑤兩圓內含d<R-r(R>r)
126定理 相交兩圓的連心線垂直平分兩圓的公共弦
127定理 把圓分成n(n≥3):
⑴依次連結各分點所得的多邊形是這個圓的內接正n邊形
⑵經過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形
128定理 任何正多邊形都有一個外接圓和一個內切圓,這兩個圓是同心圓
129正n邊形的每個內角都等於(n-2)×180°/n
130定理 正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形
131正n邊形的面積Sn=pnrn/2 p表示正n邊形的周長
132正三角形面積√3a/4 a表示邊長
133如果在一個頂點周圍有k個正n邊形的角,由於這些角的和應為
360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4
134弧長計算公式:L=n兀R/180
135扇形面積公式:S扇形=n兀R^2/360=LR/2
136內公切線長= d-(R-r) 外公切線長= d-(R+r)
例題:
1、一次函數:若兩個變數x,y存在關系為y=kx+b (k≠0, k,b為常數)的形式,則稱y是x的函數。
注意:(1)k≠0,否則自變數x的最高次項的系數不為1;
(2)當b=0時,y=kx,y叫x的正比例函數。
2、圖象:一次函數的圖象是一條直線
(1)兩個常有的特殊點:與y軸交於(0,b);與x軸交於(- ,0)。
(2)正比例函數y=kx(k≠0)的圖象是經過(0,0)和(1,k)的一條直線;一次函數y=kx+b(k≠0)的圖象是經過(- ,0)和(0,b)的一條直線。
(3)由圖象可以知道,直線y=kx+b與直線y=kx平行,例如直線:y=2x+3與直線y=2x-5都與直線y=2x平行。
3、一次函數圖象的性質:
(1)圖象在平面直角坐標系中的位置:
(2)增減性:
k>0時,y隨x增大而增大;
k<0時,y隨x增大而減小。
4、求一次函數解析式的方法
求函數解析式的方法主要有三種:
一是由已知函數推導,如例題1;
二是由實際問題列出兩個未知數的方程,再轉化為函數解析式,如例題4的第一問。
三是用待定系數法求函數解析式,如例2的第二小題、例7。
其步驟是:①根據題給條件寫出含有待定系數的解析式;②將x、y的幾對值或圖象上幾個點的坐標代入上述的解析式中,得到以待定系數為未知數的方程或方程組;③解方程,得到待定系數的具體數值;④將求出的待定系數代入要求的函數解析式中。
二、例題舉例:
例1、已知變數y與y1的關系為y=2y1,變數y1與x的關系為y1=3x+2,求變數y與x的函數關系。
分析:已知兩組函數關系,其中共同的變數是y1,所以通過y1可以找到y與x的關系。
解:∵ y=2y1
y1=3x+2,
∴ y=2(3x+2)=6x+4,
即變數y與x的關系為:y=6x+4。
例2、解答下列題目
(1)(甘肅省中考題)已知直線 與y軸交於點A,那麼點A的坐標是( )。
(A)(0,–3) (B) (C) (D)(0,3)
(2)(杭州市中考題)已知正比例函數 ,當x=–3時,y=6.那麼該正比例函數應為( )。
(A) (B) (C) (D)
(3)(福州市中考題)一次函數y=x+1的圖象,不經過的象限是( )。
(A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限
分析與答案:
(1) 直線與y軸交點坐標,特點是橫坐標是0,縱坐標可代入函數關系求得。
或者直接利用直線和y軸交點為(0,b),得到交點(0,3),答案為D。
(2) 求解析式的關鍵是確定系數k,本題已知x=-3時,y=6,代入到y=kx中,解析式可確定。答案D: y=-2x。
(3) 由一次函數y=kx+b的圖象性質,有以下結論:
,
題目中y=x+1,k=1>0,則函數圖象必過一、三象限;b=1>0,則直線和y軸交於正半軸,可以判定直線位置,也可以畫草圖,或取兩個點畫草圖判斷,圖像不過第四象限。
答案:D。
例3、(遼寧省中考題)某單位急需用車;但又不準備買車,他們准備和一個體車主或一國營計程車公司其中的一家簽訂月租車合同。設汽車每月行駛x千米,應付給個體車主的月費用是y1元,應付給計程車公司的月費用是y2元,y1、y2分別與x之間的函數關系圖象(兩條射線)如圖,觀察圖象回答下列問題:
(1)每月行駛的路程在什麼范圍內時,租國營公司的車合算?
(2)每月行駛的路程等於多少時,租兩家車的費用相同?
(3)如果這個單位估計每月行駛的路程為2300千米,那麼這個單位租哪家的車合算?
分析:因給出了兩個函數的圖象可知一個是一次函數,一個是一次函數的特殊形式正比例函數,兩條直線交點的橫坐標為1500,表明當x=1500時,兩條直線的函數值y相等,並且根據圖像可以知道x>1500時,y2在y1上方;0<x<1500時,y2在y1下方。利用圖象,三個問題很容易解答。
答:(1)每月行駛的路程小於1500千米時,租國營公司的車合算。
[或答:當0≤x<1500(千米)時,租國營公司的車合算]。
(2)每月行駛的路程等於1500千米時,租兩家車的費用相同。
(3)如果每月行駛的路程為2300千米,那麼這個單位租個體車主的車合算。
例4、(河北省中考題)某工廠有甲、乙兩條生產線先後投產。在乙生產線投產以前,甲生產線已生產了200噸成品;從乙生產線投產開始,甲、乙兩條生產線每天分別生產20噸和30噸成品。
(1)分別求出甲、乙兩條生產線投產後,各自總產量y(噸)與從乙開始投產以來所用時間x(天)之間的函數關系式,並求出第幾天結束時,甲、乙兩條生產線的總產量相同;
(2)在如圖所示的直角坐標系中,作出上述兩個函數在第一象限內的圖象;觀察圖象,分別指出第15天和第25天結束時,哪條生產線的總產量高?
分析:(1)根據給出的條件先列出y與x的函數式, =20x+200, =30x,當 = 時,求出x。
(2)在給出的直角坐標系中畫出兩個函數的圖象,根據點的坐標可以看出第15天和25天結束時,甲、乙兩條生產線的總產量的高低。
解:(1)由題意可得:
甲生產線生產時對應的函數關系式是:y=20x+200,
乙生產線生產時對應的函數關系式是:y=30x,
令20x+200=30x,解得x=20,即第20天結束時,兩條生產線的產量相同。
(2)由(1)可知,甲生產線所對應的生產函數圖象一定經過兩點A(0,200)和
B(20,600);
乙生產線所對應的生產函數圖象一定經過兩點O(0,0)和B(20,600)。
因此圖象如右圖所示,由圖象可知:第15天結束時,甲生產線的總產量高;第25天結束時,乙生產線的總產量高。
例5.直線y=kx+b與直線y=5-4x平行,且與直線y=-3(x-6)相交,交點在y軸上,求此直線解析式。
分析:直線y=kx+b的位置由系數k、b來決定:由k來定方向,由b來定與y軸的交點,若兩直線平行,則解析式的一次項系數k相等。例如y=2x,y=2x+3的圖象平行。
解:∵ y=kx+b與y=5-4x平行,
∴ k=-4,
∵ y=kx+b與y=-3(x-6)=-3x+18相交於y軸,
∴ b=18,
∴ y=-4x+18。
說明:一次函數y=kx+b圖象的位置由系數k、b來決定:由k來定方向,由b來定點,即函數圖象平行於直線y=kx,經過(0,b)點,反之亦成立,即由函數圖象方向定k,由與y軸交點定b。
例6.直線與x軸交於點A(-4,0),與y軸交於點B,若點B到x軸的距離為2,求直線的解析式。
解:∵ 點B到x軸的距離為2,
∴ 點B的坐標為(0,±2),
設直線的解析式為y=kx±2,
∵ 直線過點A(-4,0),
∴ 0=-4k±2,
解得:k=± ,
∴直線AB的解析式為y= x+2或y=- x-2。
說明:此例看起來很簡單,但實際上隱含了很多推理過程,而這些推理是求一次函數解析式必備的。
(1)圖象是直線的函數是一次函數;
(2)直線與y軸交於B點,則點B(0,yB);
(3)點B到x軸距離為2,則|yB|=2;
(4)點B的縱坐標等於直線解析式的常數項,即b=yB;
(5)已知直線與y軸交點的縱坐標yB,可設y=kx+yB;
下面只需待定k即可。
三、提高與思考
例1.已知一次函數y1=(n-2)x+n的圖象與y軸交點的縱坐標為-1,判斷y2=(3- )xn+2是什麼函數,寫出兩個函數的解析式,並指出兩個函數在直角坐標系中的位置及增減性。
解:依題意,得
解得n=-1,
∴ y1=-3x-1,
y2=(3- )x, y2是正比例函數;
y1=-3x-1的圖象經過第二、三、四象限,y1隨x的增大而減小;
y2=(3- )x的圖象經過第一、三象限,y2隨x的增大而增大。
說明:由於一次函數的解析式含有待定系數n,故求解析式的關鍵是構造關於n的方程,此題利用「一次函數解析式的常數項就是圖象與y軸交點縱坐標」來構造方程。
例2.已知一次函數的圖象,交x軸於A(-6,0),交正比例函數的圖象於點B,且點B在第三象限,它的橫坐標為-2,△AOB的面積為6平方單位,求正比例函數和一次函數的解析式。
分析:自畫草圖如下:
解:設正比例函數y=kx,
一次函數y=ax+b,
∵ 點B在第三象限,橫坐標為-2,
設B(-2,yB),其中yB<0,
∵ =6,
∴ AO•|yB|=6,
∴ yB=-2,
把點B(-2,-2)代入正比例函數y=kx,得k=1,
把點A(-6,0)、B(-2,-2)代入y=ax+b,
得
解得:
∴ y=x, y=- x-3即所求。
說明:(1)此例需要利用正比例函數、一次函數定義寫出含待定系數的結構式,注意兩個函數中的系數要用不同字母表示;
(2)此例需要把條件(面積)轉化為點B的坐標。這個轉化實質含有兩步:一是利用面積公式 AO•
BD=6(過點B作BD⊥AO於D)計算出線段長BD=2,再利用|yB|=BD及點B在第三象限計算出yB=-2。若去掉第三象限的條件,想一想點B的位置有幾種可能,結果會有什麼變化?(答:有兩種可能,點B可能在第二象限(-2,2),結果增加一組y=-x, y= (x+3)。 (有答案,自己去看吧)
1 全等三角形的對應邊、對應角相等
2邊角邊公理(SAS) 有兩邊和它們的夾角對應相等的兩個三角形全等
3 角邊角公理( ASA)有兩角和它們的夾邊對應相等的兩個三角形全等
4 推論(AAS) 有兩角和其中一角的對邊對應相等的兩個三角形全等
5 邊邊邊公理(SSS) 有三邊對應相等的兩個三角形全等
6 斜邊、直角邊公理(HL) 有斜邊和一條直角邊對應相等的兩個直角三角形全等
7 定理1 在角的平分線上的點到這個角的兩邊的距離相等
8 定理2 到一個角的兩邊的距離相同的點,在這個角的平分線上
9 角的平分線是到角的兩邊距離相等的所有點的集合
10 等腰三角形的性質定理 等腰三角形的兩個底角相等 (即等邊對等角)
21 推論1 等腰三角形頂角的平分線平分底邊並且垂直於底邊
22 等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合
23 推論3 等邊三角形的各角都相等,並且每一個角都等於60°
24 等腰三角形的判定定理 如果一個三角形有兩個角相等,那麼這兩個角所對的邊也相等(等角對等邊)
25 推論1 三個角都相等的三角形是等邊三角形
26 推論 2 有一個角等於60°的等腰三角形是等邊三角形
27 在直角三角形中,如果一個銳角等於30°那麼它所對的直角邊等於斜邊的一半
28 直角三角形斜邊上的中線等於斜邊上的一半
29 定理 線段垂直平分線上的點和這條線段兩個端點的距離相等
30 逆定理 和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上
31 線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合
32 定理1 關於某條直線對稱的兩個圖形是全等形
33 定理 2 如果兩個圖形關於某直線對稱,那麼對稱軸是對應點連線的垂直平分線
34定理3 兩個圖形關於某直線對稱,如果它們的對應線段或延長線相交,那麼交點在對稱軸上
35逆定理 如果兩個圖形的對應點連線被同一條直線垂直平分,那麼這兩個圖形關於這條直線對稱
36勾股定理 直角三角形兩直角邊a、b的平方和、等於斜邊c的平方,即a^2+b^2=c^2
37勾股定理的逆定理 如果三角形的三邊長a、b、c有關系a^2+b^2=c^2 ,那麼這個三角形是直角三角形
38定理 四邊形的內角和等於360°
39四邊形的外角和等於360°
40多邊形內角和定理 n邊形的內角的和等於(n-2)×180°
41推論 任意多邊的外角和等於360°
42平行四邊形性質定理1 平行四邊形的對角相等
43平行四邊形性質定理2 平行四邊形的對邊相等
44推論 夾在兩條平行線間的平行線段相等
45平行四邊形性質定理3 平行四邊形的對角線互相平分
46平行四邊形判定定理1 兩組對角分別相等的四邊形是平行四邊形
47平行四邊形判定定理2 兩組對邊分別相等的四邊形是平行四邊形
48平行四邊形判定定理3 對角線互相平分的四邊形是平行四邊形
49平行四邊形判定定理4 一組對邊平行相等的四邊形是平行四邊形
50矩形性質定理1 矩形的四個角都是直角
51矩形性質定理2 矩形的對角線相等
52矩形判定定理1 有三個角是直角的四邊形是矩形
53矩形判定定理2 對角線相等的平行四邊形是矩形
54菱形性質定理1 菱形的四條邊都相等
55菱形性質定理2 菱形的對角線互相垂直,並且每一條對角線平分一組對角
56菱形面積=對角線乘積的一半,即S=(a×b)÷2
57菱形判定定理1 四邊都相等的四邊形是菱形
58菱形判定定理2 對角線互相垂直的平行四邊形是菱形
59正方形性質定理1 正方形的四個角都是直角,四條邊都相等
60正方形性質定理2正方形的兩條對角線相等,並且互相垂直平分,每條對角線平分一組對角
61定理1 關於中心對稱的兩個圖形是全等的
62定理2 關於中心對稱的兩個圖形,對稱點連線都經過對稱中心,並且被對稱中心平分
63逆定理 如果兩個圖形的對應點連線都經過某一點,並且被這一
點平分,那麼這兩個圖形關於這一點對稱
64等腰梯形性質定理 等腰梯形在同一底上的兩個角相等
65等腰梯形的兩條對角線相等
66等腰梯形判定定理 在同一底上的兩個角相等的梯形是等腰梯形
67對角線相等的梯形是等腰梯形
68平行線等分線段定理 如果一組平行線在一條直線上截得的線段
相等,那麼在其他直線上截得的線段也相等
69 推論1 經過梯形一腰的中點與底平行的直線,必平分
④ 初二數學中考知識點歸納
學習需要制定詳細的計劃,計劃本身對大家有較強的約束和督促作用,計劃對學習既有指導作用,又有推動作用。制定好的 學習計劃 ,是提高工作效率的重要手段。下面是我給大家整理的一些初二數學的知識點,希望對大家有所幫助。
初二上學期數學知識點歸納
分式方程
一、理解定義
1、分式方程:含分式,並且分母中含未知數的方程——分式方程。
2、解分式方程的思路是:
(1)在方程的兩邊都乘以最簡公分母,約去分母,化成整式方程。
(2)解這個整式方程。
(3)把整式方程的根帶入最簡公分母,看結果是不是為零,使最簡公分母為零的根是原方程的增根,必須捨去。
(4)寫出原方程的根。
「一化二解三檢驗四 總結 」
3、增根:分式方程的增根必須滿足兩個條件:
(1)增根是最簡公分母為0;(2)增根是分式方程化成的整式方程的.根。
4、分式方程的解法:
(1)能化簡的先化簡(2)方程兩邊同乘以最簡公分母,化為整式方程;
(3)解整式方程;(4)驗根;
註:解分式方程時,方程兩邊同乘以最簡公分母時,最簡公分母有可能為0,這樣就產生了增根,因此分式方程一定要驗根。
分式方程檢驗 方法 :將整式方程的解帶入最簡公分母,如果最簡公分母的值不為0,則整式方程的解是原分式方程的解;否則,這個解不是原分式方程的解。
5、分式方程解實際問題
步驟:審題—設未知數—列方程—解方程—檢驗—寫出答案,檢驗時要注意從方程本身和實際問題兩個方面進行檢驗。
二、軸對稱圖形:
一個圖形沿一條直線對折,直線兩旁的部分能夠完全重合。這條直線叫做對稱軸。互相重合的點叫做對應點。
1、軸對稱:
兩個圖形沿一條直線對折,其中一個圖形能夠與另一個圖形完全重合。這條直線叫做對稱軸。互相重合的點叫做對應點。
2、軸對稱圖形與軸對稱的區別與聯系:
(1)區別。軸對稱圖形討論的是「一個圖形與一條直線的對稱關系」;軸對稱討論的是「兩個圖形與一條直線的對稱關系」。
(2)聯系。把軸對稱圖形中「對稱軸兩旁的部分看作兩個圖形」便是軸對稱;把軸對稱的「兩個圖形看作一個整體」便是軸對稱圖形。
3、軸對稱的性質:
(1)成軸對稱的兩個圖形全等。
(2)對稱軸與連結「對應點的線段」垂直。
(3)對應點到對稱軸的距離相等。
(4)對應點的連線互相平行。
三、用坐標表示軸對稱
1、點(x,y)關於x軸對稱的點的坐標為(x,-y);
2、點(x,y)關於y軸對稱的點的坐標為(-x,y);
3、點(x,y)關於原點對稱的點的坐標為(-x,-y)。
四、關於坐標軸夾角平分線對稱
點P(x,y)關於第一、三象限坐標軸夾角平分線y=x對稱的點的坐標是(y,x)
點P(x,y)關於第二、四象限坐標軸夾角平分線y=-x對稱的點的坐標是(-y,-x)
八年級 上冊數學知識點
一、在平面內,確定物體的位置一般需要兩個數據。
二、平面直角坐標系及有關概念
1、平面直角坐標系
在平面內,兩條互相垂直且有公共原點的數軸,組成平面直角坐標系。其中,水平的數軸叫做x軸或橫軸,取向右為正方向;鉛直的數軸叫做y軸或縱軸,取向上為正方向;x軸和y軸統稱坐標軸。它們的公共原點O稱為直角坐標系的原點;建立了直角坐標系的平面,叫做坐標平面。
2、為了便於描述坐標平面內點的位置,把坐標平面被x軸和y軸分割而成的四個部分,分別叫做第一象限、第二象限、第三象限、第四象限。
注意:x軸和y軸上的點(坐標軸上的點),不屬於任何一個象限。
3、點的坐標的概念
對於平面內任意一點P,過點P分別x軸、y軸向作垂線,垂足在上x軸、y軸對應的數a,b分別叫做點P的橫坐標、縱坐標,有序數對(a,b)叫做點P的坐標。
點的坐標用(a,b)表示,其順序是橫坐標在前,縱坐標在後,中間有「,」分開,橫、縱坐標的位置不能顛倒。平面內點的坐標是有序實數對,當時,(a,b)和(b,a)是兩個不同點的坐標。
平面內點的與有序實數對是一一對應的。
4、不同位置的點的坐標的特徵
(1)、各象限內點的坐標的特徵
點P(x,y)在第一象限:x;0,y;0
點P(x,y)在第二象限:x;0,y;0
點P(x,y)在第三象限:x;0,y;0
點P(x,y)在第四象限:x;0,y;0
(2)、坐標軸上的點的特徵
點P(x,y)在x軸上,y=0,x為任意實數
點P(x,y)在y軸上,x=0,y為任意實數
點P(x,y)既在x軸上,又在y軸上,x,y同時為零,即點P坐標為(0,0)即原點
(3)、兩條坐標軸夾角平分線上點的坐標的特徵
點P(x,y)在第一、三象限夾角平分線(直線y=x)上,x與y相等
點P(x,y)在第二、四象限夾角平分線上,x與y互為相反數
(4)、和坐標軸平行的直線上點的坐標的特徵
位於平行於x軸的直線上的各點的縱坐標相同。
位於平行於y軸的直線上的各點的橫坐標相同。
(5)、關於x軸、y軸或原點對稱的點的坐標的特徵
點P與點p』關於x軸對稱橫坐標相等,縱坐標互為相反數,即點P(x,y)關於x軸的對稱點為P』(x,-y)
點P與點p』關於y軸對稱縱坐標相等,橫坐標互為相反數,即點P(x,y)關於y軸的對稱點為P』(-x,y)
點P與點p』關於原點對稱橫、縱坐標均互為相反數,即點P(x,y)關於原點的對稱點為P』(-x,-y)
初二數學 復習方法
按部就班
數學是環環相扣的一門學科,哪一個環節脫節都會影響整個學習的進程。所以,平時學習不應貪快,要一章一章過關,不要輕易留下自己不明白或者理解不深刻的問題。
強調理解
概念、定理、公式要在理解的基礎上記憶。每新學一個定理,嘗試先不看答案,做一次例題,看是否能正確運用新定理;若不行,則對照答案,加深對定理的理解。
基本訓練
學習數學是不能缺少訓練的,平時多做一些難度適中的練習,當然莫要陷入死鑽難題的誤區,要熟悉高考的題型,訓練要做到有的放矢。
重視錯誤
訂一個錯題本,專門搜集自己的錯題,這些往往就是自己的薄弱之處。復習時,這個錯題本也就成了寶貴的復習資料。
數學的學習有一個循序漸進的過程,妄想一步登天是不現實的。熟記書本內容後將書後習題認真寫好,有些同學可能認為書後習題太簡單不值得做,這種想法是極不可取的,書後習題的作用不僅幫助你將書本內容記牢,還輔助你將書寫格式規范化,從而使自己的解題結構緊密而又嚴整,公式定理能夠運用的恰如其分,以減少考試中無謂的失分。
平時的數學學習:
○1課前認真預習.預習的目的是為了能更好得聽老師講課,通過預習,掌握度要達到百分之八十.帶著預習中不明白的問題去聽老師講課,來解答這類的問題.預習還可以使聽課的整體效率提高.具體的預習方法:將書上的題目做完,畫出知識點,整個過程大約持續15-20分鍾.在時間允許的情況下,還可以將練習冊做完.
○2讓數學課學與練結合.在數學課上,光聽是沒用的.當老師讓同學去黑板上演算時,自己也要在草稿紙上練.如果遇到不懂的難題,一定要提出來,不能不求甚解.否則考試遇到類似的題目就可能不會做.聽老師講課時一定要全神貫注,要注意細節問題,否則「千里之堤,毀於蟻穴」.
○3課後及時復習.寫完作業後對當天老師講的內容進行梳理,可以適當地做25分鍾左右的課外題.可以根據自己的需要選擇適合自己的課外書.其課外題內容大概就是今天上的課.
○4單元測驗是為了檢測近期的學習情況.其實分數代表的是你的過去,關鍵的是對於每次考試的總結和吸取教訓,是為了讓你在期中、期末考得更好.老師經常會在沒通知的情況下進行考試,所以要及時做到「課後復習」.
初二數學中考知識點歸納相關 文章 :
★ 初中數學知識點整理:
★ 初中數學基礎知識整理歸納
★ 中考數學知識點總結最全提綱
★ 初中數學知識點總結大全
★ 初中數學知識點總結梳理
★ 初三數學知識點考點歸納總結
★ 初中數學基礎知識點歸納總結
★ 初中數學知識點總結大全
★ 初中數學知識點總結歸納
⑤ 初2數學 對應點是什麼意思
這個不好說,舉個例子,兩個相似三角形,如果abc相似於def,那麼a與d是對應點
⑥ 小學數學中旋轉的正確定義是什麼
在平面內,一個圖形繞著一個定點旋轉一定的角度得到另一個圖形的變化叫做旋轉。
這個定點叫做旋轉中心,旋轉的角度叫做旋轉角,如果一個圖形上的點A經過旋轉變為點A',那麼這兩個點叫做旋轉的對應點。
(6)數學什麼叫做對應點擴展閱讀
旋轉的性質——
圖形的旋轉是圖形上的每一點在平面上繞著某個固定點旋轉固定角度的位置移動,
①對應點到旋轉中心的距離相等。
②對應點與旋轉中心所連線段的夾角等於旋轉角。
③旋轉前、後的圖形全等,即旋轉前後圖形的大小和形狀沒有改變。
④旋轉中心是唯一不動的點。
⑦ 數學的衍生點是什麼意思
數學的衍生點也是學習數學里的,更多的關於數學的知識和理解的東西。
⑧ 對應點是什麼意思呀
動)一個系統中某一項跟另一系統中某一項相當:~規律。(形)針對某種情況做出相應的(辦法):做出~決定|採取~措施。
釋義:一個相對的關系,兩者近視可視作能互相對換替代。
比喻在一種事物與另一事物的情況一致。
例:對應原理——丹麥物理學家N.H.D.玻爾提出的一條從原子的經典理論過渡到量子理論的原則。針對某一情況下,與某一情況相應的(做法)。例:對應量——分數乘法應用題的數學名詞。
⑨ 數學中對應的點是什麼意思
在幾何學、拓撲學以及數學的相關分支中,對應的點用於描述給定空間中的 1 種特別的對象,在空間中有類似於體積、面積、長、寬、高的類似物。1 個點是 1 個 0 維的對象。點作為最簡單的圖形概念,通常作為幾何學、矢量圖形和其他領域中最基本的組成部分。
點是無法被定義的。試圖去定義點就會陷入重復定義、逆邏輯定義的深淵。點作為原始概念的同時也具有原始概念的性質。
比如,把平行四邊形定義為兩組對邊分別平行的四邊形,因此就必須先對四邊形、平行以及對邊進行定義。定義四邊形時,應先對多邊形及邊進行定義,又必須先定義折線,故必須先要對點和直線進行定義。
但是,在一般的初等幾何中,點和直線都無法再用已被定義過的概念進行定義,它們都是原始概念。在數學中,點、直線、平面、集合,空間、數、量等都是原始概念。
對應的點性質:
1、不可定義性:定義無效;
2、確定性:任意 1 個點都可以用有序數對精確地定位;
3、唯一性:1 組有序數對能且只能定位 1 個點;
4、互異性:任意兩個點都是不同的對象。
⑩ 初一數學坐標上的對應的點是什麼意思
額。。。。。。知道XY的橫坐標和縱坐標吧,,,,如﹙5,6﹚,,,5就是橫坐標,6就是縱坐標,把他往坐標系一代 一定能得到一個點,這個點就是5,6在坐標系的對應的點