① 高一數學人教版上學期知識點
偶爾會抱怨為什麼自己沒天賦,又或者因為別人能輕易做到自己做不到的事而不平衡。從某種角度上來講,這完全沒辦法。現在的我倒覺得這樣也好,世上或許有人能一步登天,但那人不是我。自己一點一點抓住的東西,比什麼都來得真實。用時間換天份,用堅持換機遇,我走得很慢,但我絕不回頭。我高一頻道為大家整理了《 高一數學 上學期知識點復習》供大家參考!
高一數學人教版上學期知識點
1.函數的奇偶性
(1)若f(x)是偶函數,那麼f(x)=f(-x);
(2)若f(x)是奇函數,0在其定義域內,則f(0)=0(可用於求參數);
(3)判斷函數奇偶性可用定義的等價形式:f(x)±f(-x)=0或(f(x)≠0);
(4)若所給函數的解析式較為復雜,應先化簡,再判斷其奇偶性;
(5)奇函數在對稱的單調區間內有相同的單調性;偶函數在對稱的單調區間內有相反的單調性;
2.復合函數的有關問題
(1)復合函數定義域求法:若已知的定義域為[a,b],其復合函數f[g(x)]的定義域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定義域為[a,b],求f(x)的定義域,相當於x∈[a,b]時,求g(x)的值域(即f(x)的定義域);研究函數的問題一定要注意定義域優先的原則。
(2)復合函數的單調性由「同增異減」判定;
3.函數圖像(或方程曲線的對稱性)
(1)證明函數圖像的對稱性,即證明圖像上任意點關於對稱中心(對稱軸)的對稱點仍在圖像上;
(2)證明圖像C1與C2的對稱性,即證明C1上任意點關於對稱中心(對稱軸)的對稱點仍在C2上,反之亦然;
(3)曲線C1:f(x,y)=0,關於y=x+a(y=-x+a)的對稱曲線C2的方程為f(y-a,x+a)=0(或f(-y+a,-x+a)=0);
(4)曲線C1:f(x,y)=0關於點(a,b)的對稱曲線C2方程為:f(2a-x,2b-y)=0;
(5)若函數y=f(x)對x∈R時,f(a+x)=f(a-x)恆成立,則y=f(x)圖像關於直線x=a對稱;
(6)函數y=f(x-a)與y=f(b-x)的圖像關於直線x=對稱;
4.函數的周期性
(1)y=f(x)對x∈R時,f(x+a)=f(x-a)或f(x-2a)=f(x)(a>0)恆成立,則y=f(x)是周期為2a的周期函數;
(2)若y=f(x)是偶函數,其圖像又關於直線x=a對稱,則f(x)是周期為2︱a︱的周期函數;
(3)若y=f(x)奇函數,其圖像又關於直線x=a對稱,則f(x)是周期為4︱a︱的周期函數;
(4)若y=f(x)關於點(a,0),(b,0)對稱,則f(x)是周期為2的周期函數;
(5)y=f(x)的圖象關於直線x=a,x=b(a≠b)對稱,則函數y=f(x)是周期為2的周期函數;
(6)y=f(x)對x∈R時,f(x+a)=-f(x)(或f(x+a)=,則y=f(x)是周期為2的周期函數;
5.方程k=f(x)有解k∈D(D為f(x)的值域);
a≥f(x)恆成立a≥[f(x)]max,;a≤f(x)恆成立a≤[f(x)]min;
(1)(a>0,a≠1,b>0,n∈R+);
(2)logaN=(a>0,a≠1,b>0,b≠1);
(3)logab的符號由口訣「同正異負」記憶;
(4)alogaN=N(a>0,a≠1,N>0);
6.判斷對應是否為映射時,抓住兩點:
(1)A中元素必須都有象且;
(2)B中元素不一定都有原象,並且A中不同元素在B中可以有相同的象;
7.能熟練地用定義證明函數的單調性,求反函數,判斷函數的奇偶性。
8.對於反函數,應掌握以下一些結論:
(1)定義域上的單調函數必有反函數;
(2)奇函數的反函數也是奇函數;
(3)定義域為非單元素集的偶函數不存在反函數;
(4)周期函數不存在反函數;
(5)互為反函數的兩個函數具有相同的單調性;
(6)y=f(x)與y=f-1(x)互為反函數,設f(x)的定義域為A,值域為B,則有f[f--1(x)]=x(x∈B),f--1[f(x)]=x(x∈A);
9.處理二次函數的問題勿忘數形結合
二次函數在閉區間上必有最值,求最值問題用「兩看法」:一看開口方向;二看對稱軸與所給區間的相對位置關系;
10依據單調性
利用一次函數在區間上的保號性可解決求一類參數的范圍問題;
11恆成立問題的處理 方法 :
(1)分離參數法;
(2)轉化為一元二次方程的根的分布列不等式(組)求解;
練習題:
1.(-3,4)關於x軸對稱的點的坐標為_________,關於y軸對稱的點的坐標為__________,
關於原點對稱的坐標為__________.
2.點B(-5,-2)到x軸的距離是____,到y軸的距離是____,到原點的距離是____
3.以點(3,0)為圓心,半徑為5的圓與x軸交點坐標為_________________,
與y軸交點坐標為________________
4.點P(a-3,5-a)在第一象限內,則a的取值范圍是____________
5.小華用500元去購買單價為3元的一種商品,剩餘的錢y(元)與購買這種商品的件數x(件)
之間的函數關系是______________,x的取值范圍是__________
6.函數y=的自變數x的取值范圍是________
7.當a=____時,函數y=x是正比例函數
8.函數y=-2x+4的圖象經過___________象限,它與兩坐標軸圍成的三角形面積為_________,
周長為_______
9.一次函數y=kx+b的圖象經過點(1,5),交y軸於3,則k=____,b=____
10.若點(m,m+3)在函數y=-x+2的圖象上,則m=____
11.y與3x成正比例,當x=8時,y=-12,則y與x的函數解析式為___________
12.函數y=-x的圖象是一條過原點及(2,___)的直線,這條直線經過第_____象限,
當x增大時,y隨之________
13.函數y=2x-4,當x_______,y0,b0,b>0;C、k
高一數學人教版上學期知識點
1.數列的定義
按一定次序排列的一列數叫做數列,數列中的每一個數都叫做數列的項.
(1)從數列定義可以看出,數列的數是按一定次序排列的,如果組成數列的數相同而排列次序不同,那麼它們就不是同一數列,例如數列1,2,3,4,5與數列5,4,3,2,1是不同的數列.
(2)在數列的定義中並沒有規定數列中的數必須不同,因此,在同一數列中可以出現多個相同的數字,如:-1的1次冪,2次冪,3次冪,4次冪,…構成數列:-1,1,-1,1,….
(4)數列的項與它的項數是不同的,數列的項是指這個數列中的某一個確定的數,是一個函數值,也就是相當於f(n),而項數是指這個數在數列中的位置序號,它是自變數的值,相當於f(n)中的n.
(5)次序對於數列來講是十分重要的,有幾個相同的數,由於它們的排列次序不同,構成的數列就不是一個相同的數列,顯然數列與數集有本質的區別.如:2,3,4,5,6這5個數按不同的次序排列時,就會得到不同的數列,而{2,3,4,5,6}中元素不論按怎樣的次序排列都是同一個集合.
2.數列的分類
(1)根據數列的項數多少可以對數列進行分類,分為有窮數列和無窮數列.在寫數列時,對於有窮數列,要把末項寫出,例如數列1,3,5,7,9,…,2n-1表示有窮數列,如果把數列寫成1,3,5,7,9,…或1,3,5,7,9,…,2n-1,…,它就表示無窮數列.
(2)按照項與項之間的大小關系或數列的增減性可以分為以下幾類:遞增數列、遞減數列、擺動數列、常數列.
3.數列的通項公式
數列是按一定次序排列的一列數,其內涵的本質屬性是確定這一列數的規律,這個規律通常是用式子f(n)來表示的,
這兩個通項公式形式上雖然不同,但表示同一個數列,正像每個函數關系不都能用解析式表達出來一樣,也不是每個數列都能寫出它的通項公式;有的數列雖然有通項公式,但在形式上,又不一定是的,僅僅知道一個數列前面的有限項,無其他說明,數列是不能確定的,通項公式更非.如:數列1,2,3,4,…,
由公式寫出的後續項就不一樣了,因此,通項公式的歸納不僅要看它的前幾項,更要依據數列的構成規律,多觀察分析,真正找到數列的內在規律,由數列前幾項寫出其通項公式,沒有通用的方法可循.
再強調對於數列通項公式的理解注意以下幾點:
(1)數列的通項公式實際上是一個以正整數集N或它的有限子集{1,2,…,n}為定義域的函數的表達式.
(2)如果知道了數列的通項公式,那麼依次用1,2,3,…去替代公式中的n就可以求出這個數列的各項;同時,用數列的通項公式也可判斷某數是否是某數列中的一項,如果是的話,是第幾項.
(3)如所有的函數關系不一定都有解析式一樣,並不是所有的數列都有通項公式.
如2的不足近似值,精確到1,0.1,0.01,0.001,0.0001,…所構成的數列1,1.4,1.41,1.414,1.4142,…就沒有通項公式.
(4)有的數列的通項公式,形式上不一定是的,正如舉例中的:
(5)有些數列,只給出它的前幾項,並沒有給出它的構成規律,那麼僅由前面幾項歸納出的數列通項公式並不.
4.數列的圖象
對於數列4,5,6,7,8,9,10每一項的序號與這一項有下面的對應關系:
序號:1234567
項:45678910
這就是說,上面可以看成是一個序號集合到另一個數的集合的映射.因此,從映射、函數的觀點看,數列可以看作是一個定義域為正整集N(或它的有限子集{1,2,3,…,n})的函數,當自變數從小到大依次取值時,對應的一列函數值.這里的函數是一種特殊的函數,它的自變數只能取正整數.
由於數列的項是函數值,序號是自變數,數列的通項公式也就是相應函數和解析式.
數列是一種特殊的函數,數列是可以用圖象直觀地表示的.
數列用圖象來表示,可以以序號為橫坐標,相應的項為縱坐標,描點畫圖來表示一個數列,在畫圖時,為方便起見,在平面直角坐標系兩條坐標軸上取的單位長度可以不同,從數列的圖象表示可以直觀地看出數列的變化情況,但不精確.
把數列與函數比較,數列是特殊的函數,特殊在定義域是正整數集或由以1為首的有限連續正整數組成的集合,其圖象是無限個或有限個孤立的點.
5.遞推數列
一堆鋼管,共堆放了七層,自上而下各層的鋼管數構成一個數列:4,5,6,7,8,9,10.①
數列①還可以用如下方法給出:自上而下第一層的鋼管數是4,以下每一層的鋼管數都比上層的鋼管數多1
練習題:
1.若等差數列{an}的前n項和為Sn,且滿足S33-S22=1,則數列{an}的公差是()
A.12B.1C.2D.3
解析:由Sn=na1+n(n-1)2d,得S3=3a1+3d,S2=2a1+d,代入S33-S22=1,得d=2,故選C.
答案:C
2.已知數列a1=1,a2=5,an+2=an+1-an(n∈N),則a2011等於()
A.1B.-4C.4D.5
解析:由已知,得a1=1,a2=5,a3=4,a4=-1,a5=-5,a6=-4,a7=1,a8=5,…
故{an}是以6為周期的數列,
∴a2011=a6×335+1=a1=1.
答案:A
3.設{an}是等差數列,Sn是其前n項和,且S5S8,則下列結論錯誤的是()
A.d<0B.a7=0
C.S9>S5D.S6與S7均為Sn的值
解析:∵S50.S6=S7,∴a7=0.
又S7>S8,∴a8<0.
假設S9>S5,則a6+a7+a8+a9>0,即2(a7+a8)>0.
∵a7=0,a8<0,∴a7+a8<0.假設不成立,故S9<s5.∴c錯誤.< p="">
答案:C
高一數學人教版上學期知識點
一:集合的含義與表示
1、集合的含義:集合為一些確定的、不同的東西的全體,人們能意識到這些東西,並且能判斷一個給定的東西是否屬於這個整體。
把研究對象統稱為元素,把一些元素組成的總體叫集合,簡稱為集。
2、集合的中元素的三個特性:
(1)元素的確定性:集合確定,則一元素是否屬於這個集合是確定的:屬於或不屬於。
(2)元素的互異性:一個給定集合中的元素是的,不可重復的。
(3)元素的無序性:集合中元素的位置是可以改變的,並且改變位置不影響集合
3、集合的表示:{…}
(1)用大寫字母表示集合:A={我校的 籃球 隊員},B={1,2,3,4,5}
(2)集合的表示方法:列舉法與描述法。
a、列舉法:將集合中的元素一一列舉出來{a,b,c……}
b、描述法:
①區間法:將集合中元素的公共屬性描述出來,寫在大括弧內表示集合。
{x?R|x-3>2},{x|x-3>2}
②語言描述法:例:{不是直角三角形的三角形}
③Venn圖:畫出一條封閉的曲線,曲線裡面表示集合。
4、集合的分類:
(1)有限集:含有有限個元素的集合
(2)無限集:含有無限個元素的集合
(3)空集:不含任何元素的集合
5、元素與集合的關系:
(1)元素在集合里,則元素屬於集合,即:a?A
(2)元素不在集合里,則元素不屬於集合,即:a¢A
注意:常用數集及其記法:
非負整數集(即自然數集)記作:N
正整數集N或N+
整數集Z
有理數集Q
實數集R
高一數學人教版上學期知識點相關 文章 :
★ 高一數學上學期知識點
★ 高一數學知識點總結(人教版)
★ 高一數學上學期重點必用的知識點
★ 高一數學必修4知識點總結(人教版)
★ 高一上下學期必須學會的知識點復習大綱
★ 高一數學知識點總結上冊
★ 高一上學期數學必修內容總結
★ 高一人教版數學必修一第一章知識點整理
★ 人教版高中數學知識點提綱
★ 高一數學正弦定理知識點總結
② 高一上學期數學要學哪幾冊人教版的
一般都是必修一和必修2.等到下學期一般是必修4和5之類的。因為這個是最難的部分。所以要高一的時候學到
③ 高一數學學的什麼內容
高一數學內容有《集合》、《函數》、《三角函數》、《向量》。
根據地區不同,有些地方是學習必修一和必修二,必修二的主要內容是《立體幾何》,簡單的《解析幾何》。有些地方是學習必修一和必修四,必修四的主要內容是《三角函數》、《向量》。必修一是一定要學的,包括《集合》、《函數》。
高一數學怎麼學
首先,在課堂教學中培養好的聽課習慣是很重要的;其次,要提高數學能力,堂上通過老師的教學,理解所學內容在教材中的地位,弄清與前後知識的聯系等,只有把握住教材,才能掌握學習的主動。
再次,要求在數學學習中一定要有節奏,這樣久而久之,思維的敏捷性和數學能力會逐步提高;最後,要沉澱下來,有價值的問題要及時抓住,遺留問題要有針對性地補,注重實效。
④ 人教版高一上冊數學內容目錄(盡量仔細點,謝謝)
您好,高一數學人教版內容如下
第一章開頭,集合,主要講元素和集合的關系,以及集合和集合之間的關系
第一章末,簡單地函數以及映射的定義,和對函數定義域,值域,解析式之間的關系的闡述
第二章開始主要講指數函數的性質
第二章中間講對數函數的定義和性質
第二章章末主要講到對數函數換底公式的應用。
第三章主要講到函數的實際應用
⑤ 現行的高中數學教材 高一高二高三 分別學些什麼
我只知道人教版的高一數學第一冊的上有三章:
第一章
集合與簡易邏輯
第二章
函數
第三章
數列
高一數學第一冊的下有兩章:
第四章
三角函數
第五章
平面向量
高二數學第二冊的上有三章:
第六章
不等式
第七章
直線與圓的方程
第八章
圓錐曲線
高二數學第二冊的下有三章:(從高2007級起)
第九章
立體幾何(A是傳統方法研究學習立體幾何,B是用空間向量解析法研究學習立體幾何,A有助於培養空間觀念,B解決問題尤其是考試尤為方便!)
第十章
排列與組合
十一章
概率
高三數學選修有:(我記不清了.唉!歲月不饒人啊!)
十二章
概率與統計
十三章
極限與導數
十四章
復數
選修高考照常要考!嘿嘿.
⑥ 人教版高一數學上冊學些什麼
高一上冊應該學兩本書我們這是學必修一和必修四,不知你們那兒怎樣。而人教版數學又有人教A版和人教B版,我學的是人教A版。
必修一主要是集合與函數概念,基本初等函數,函數的應用。
必修四主要是拓展一下三角函數,簡單了解一下平面向量。
⑦ 人教版高一數學上冊學些什麼
到了高一不是說上冊下冊這樣子的了。高中數學分為必修1至5,還有選修的。根據各個省和地區的不同,必修1-5的上課順序是不同的,但是肯定先上必修1。但是在高一上學期會上差不多2本必修。
必修一是學集合和基本初等函數,函數運用。說難不難,說是容易也是不容易的。要打好基礎就是了。
一些地方是必修1+必修4(三角函數,平面向量,三角恆等變換),
有些地方是1+2(立體幾何,解析幾何)
主要是看各個地方的教育局的安排。
⑧ 高中數學學什麼
高一上學期有的地方是學習必修一和必修四,必修一的主要內容是《集合》、《函數》,必修四的主要內容是《三角函數》、《向量》,但是有些地方是學習必修一和必修二,必修二的主要內容是《立體幾何》,簡單的《解析幾何》,如初中所學習的直線方程,園的方程以及他們的一些性質關系等。
在高一上學期,必修一是一定要學的,函數這一章一定要學好,包括函數的概念,圖像,性質以及一些基本函數,如二次函數,指數函數,對數函數,冪函數等。
高中數學內容有如下:
一、某些指定的對象集在一起就成為一個集合,簡稱集,其中每一個對象叫元素。比如高一二班集合,那麼所有高一二班的同學就構成了一個集合,每一個同學就稱為這個集合的元素。
二、通常用大寫字母表示集合,用小寫字母表示元素。
三、一個集合中,每個元素的地位都是相同的,元素之間是無序的。
四、集合論的基礎是由德國數學家康托爾在19世紀70年代奠定的,經過一大批科學家半個世紀的努力,到20世紀20年代已確立了其在現代數學理論體系中的基礎地位,可以說,現代數學各個分支的幾乎所有成果都構築在嚴格的集合理論上。
五、集合中元素的數目稱為集合的基數,集合A的基數記作card(A)。當其為有限大時,集合A稱為有限集,反之則為無限集。一般的,把含有有限個元素的集合叫做有限集,含無限個元素的集合叫做無限集。
⑨ 人教版新課標高一數學學哪幾本書 上學期學必修幾 下學期學必修幾
高一上必修1和必修4,高一下學必修5和必修2必修3,有學校有調整,比如海南是1、2、4、5、3,也有按順序學的,反正高一要把5本修完.
⑩ 新人教版高一數學知識點
知識是一座寶庫,而實踐就是開啟寶庫的鑰匙。學習任何學科,不僅需要大量的記憶,還需要大量的練習,從而達到鞏固知識的效果。下面是我給大家整理的一些 高一數學 的知識點,希望對大家有所幫助。
高一上冊數學必修一知識點梳理
函數的性質
函數的單調性(局部性質)
(1)增函數
設函數y=f(x)的定義域為I,如果對於定義域I內的某個區間D內的任意兩個自變數x1,x2,當x1
如果對於區間D上的任意兩個自變數的值x1,x2,當x1f(x2),那麼就說f(x)在這個區間上是減函數.區間D稱為y=f(x)的單調減區間.
注意:函數的單調性是函數的局部性質;
(2)圖象的特點
如果函數y=f(x)在某個區間是增函數或減函數,那麼說函數y=f(x)在這一區間上具有(嚴格的)單調性,在單調區間上增函數的圖象從左到右是上升的,減函數的圖象從左到右是下降的.
(3).函數單調區間與單調性的判定 方法
(A)定義法:
(1)任取x1,x2∈D,且x1
(2)作差f(x1)-f(x2);或者做商
(3)變形(通常是因式分解和配方);
(4)定號(即判斷差f(x1)-f(x2)的正負);
(5)下結論(指出函數f(x)在給定的區間D上的單調性).
(B)圖象法(從圖象上看升降)
(C)復合函數的單調性
復合函數f[g(x)]的單調性與構成它的函數u=g(x),y=f(u)的單調性密切相關,其規律:「同增異減」
注意:函數的單調區間只能是其定義域的子區間,不能把單調性相同的區間和在一起寫成其並集.
函數的奇偶性(整體性質)
(1)偶函數:一般地,對於函數f(x)的定義域內的任意一個x,都有f(-x)=f(x),那麼f(x)就叫做偶函數.
(2)奇函數:一般地,對於函數f(x)的定義域內的任意一個x,都有f(-x)=—f(x),那麼f(x)就叫做奇函數.
(3)具有奇偶性的函數的圖象的特徵:偶函數的圖象關於y軸對稱;奇函數的圖象關於原點對稱.
9.利用定義判斷函數奇偶性的步驟:
1首先確定函數的定義域,並判斷其是否關於原點對稱;
2確定f(-x)與f(x)的關系;
3作出相應結論:若f(-x)=f(x)或f(-x)-f(x)=0,則f(x)是偶函數;若f(-x)=-f(x)或f(-x)+f(x)=0,則f(x)是奇函數.
高一數學必修五知識點 總結
⑴公差為d的等差數列,各項同加一數所得數列仍是等差數列,其公差仍為d.
⑵公差為d的等差數列,各項同乘以常數k所得數列仍是等差數列,其公差為kd.
⑶若{a}、{b}為等差數列,則{a±b}與{ka+b}(k、b為非零常數)也是等差數列.
⑷對任何m、n,在等差數列{a}中有:a=a+(n-m)d,特別地,當m=1時,便得等差數列的通項公式,此式較等差數列的通項公式更具有一般性.
⑸、一般地,如果l,k,p,…,m,n,r,…皆為自然數,且l+k+p+…=m+n+r+…(兩邊的自然數個數相等),那麼當{a}為等差數列時,有:a+a+a+…=a+a+a+….
⑹公差為d的等差數列,從中取出等距離的項,構成一個新數列,此數列仍是等差數列,其公差為kd(k為取出項數之差).
⑺如果{a}是等差數列,公差為d,那麼,a,a,…,a、a也是等差數列,其公差為-d;在等差數列{a}中,a-a=a-a=md.(其中m、k、)
⑻在等差數列中,從第一項起,每一項(有窮數列末項除外)都是它前後兩項的等差中項.
⑼當公差d>0時,等差數列中的數隨項數的增大而增大;當d<0時,等差數列中的數隨項數的減少而減小;d=0時,等差數列中的數等於一個常數.
⑽設a,a,a為等差數列中的三項,且a與a,a與a的項距差之比=(≠-1),則a=.
⑴數列{a}為等差數列的充要條件是:數列{a}的前n項和S可以寫成S=an+bn的形式(其中a、b為常數).
⑵在等差數列{a}中,當項數為2n(nN)時,S-S=nd,=;當項數為(2n-1)(n)時,S-S=a,=.
⑶若數列{a}為等差數列,則S,S-S,S-S,…仍然成等差數列,公差為.
⑷若兩個等差數列{a}、{b}的前n項和分別是S、T(n為奇數),則=.
⑸在等差數列{a}中,S=a,S=b(n>m),則S=(a-b).
⑹等差數列{a}中,是n的一次函數,且點(n,)均在直線y=x+(a-)上.
⑺記等差數列{a}的前n項和為S.①若a>0,公差d<0,則當a≥0且a≤0時,S;②若a<0,公差d>0,則當a≤0且a≥0時,S最小.
高一 數學 學習方法 參考
基礎是關鍵,課本是首選
首先,新高一同學要明確的是:高一數學是高中數學的重點基礎。剛進入高一,有些學生還不是很適應,如果直接學習高考技巧彷彿是「沒學好走就想跑」。任何的技巧都是建立在牢牢的基礎知識之上,因此建議高一的學生多抓基礎,多看課本。
在應試 教育 中,只有多記公式,掌握解題技巧,熟悉各種題型,把自己變成一個做題機器,才能在考試中取得的成績。在高考中只會做題是不行的,一定要在會的基礎上加個「熟練」才行,小題一般要控制在每個兩分鍾左右。
高一數學的知識掌握較多,高一試題約占高考得分的70%,一學年要學五本書,只要把高一的數學掌握牢靠,高二,高三則只是對高一的復習與補充,所以進入高中後,要盡快適應新環境,上課認真聽,多做筆記,一定會學好數學。
因此,新高一同學應該在熟記概念的基礎上,多做練習,穩扎穩打,只有這樣,才能學好數學。
一、數學預習
預習是學好數學的必要前提,可謂是「火燒赤壁」所需「東風」.總的來說,預習可以分為以下2步。
1.預習即將學習的章節的課本知識。在預習課本的過程中,要將課本中的定義、定理記熟,做到活學活用。有是要仔細做課本上的例題以及課後練習,這些基礎性的東西往往是最重要的。
2.自覺完成自學稿。自學稿是新課改以來歡迎的學習方式!首先應將自學稿上的《預習檢測》部分寫完,然後想後看題。在剛開始,可能會有一些不會做,記住不要苦心去鑽研,那樣往往會事倍功半!
二、數學聽講
聽講是學好數學的重要環節。可以這么說,不聽講,就不會有好成績。
1.在上課時,認真聽老師講課,積極發言。在遇到不懂的問題時,做上標記,課後及時的向老師請教!
2.記錄往往是一個細小的環節。注意老師重復的語句,以及寫在黑板上的大量文字(數學老師一般不多寫字),及時地用一個小本記錄下來,這樣日積月累,會形成一個知識小冊。
新人教版高一數學知識點相關 文章 :
★ 高一數學知識點總結(人教版)
★ 人教版高中數學知識點提綱
★ 人教版高中數學必修一知識點
★ 高一數學人教版上學期知識點
★ 高一數學必修一知識點匯總
★ 高中階段的高一數學課本知識點歸納
★ 人教版高一高二數學知識點
★ 人教版高中數學知識點總結最新
★ 人教版高中數學必修一知識點規納數學公式
★ 人教版高一數學函數知識點