❶ 高一數學不等式題型及解題技巧
高一數學不等式題型及解題技巧如下:
1、解決絕對值問題(化簡、求值、方程、不等式、函數),把含絕對值的問題轉化為不含絕對值的問題。具體轉化方法有:
(1)分類討論法:根據絕對值符號中的數或式子的正、零、負分情況去掉絕對值。
(2)零點分段討論法:適用於含一個字母的多個絕對值的情況。
(3)兩邊平方法:適用於兩邊非負的方程或不等式。
(4)幾何意義法:適用於有明顯幾何意義的情況。
2、根據項數選擇方法和按照一般步驟是順利進行因式分解的重要技巧。
3、利用完全平方公式把一個式子或部分化為完全平方式就是配方法,它是數學中的重要方法和技巧。
4、解某些復雜的特型方程要用到:換元法。
5、待定系數法是在已知對象形式的條件下求對象的一種方法。適用於求點的坐標、函數解析式、曲線方程等重要問題的解決。
高中數學不等式一般常考的主要有兩個:基本不等式和絕對值不等式。尤其是基本不等式:幾何平均值<=算術平均值。注意到「一正」,「二定」,「三相等」,一般用採用拼湊法或待定系數法來構造滿足條件的兩項或三項,使其乘積為一定值。
一般在各個省市的高考中都會或多或少的考到,比較容易以一道選擇題或填空題出現,以及大題中的應用題中求極值會頻繁用到基本不等式(一般這種求極值的問題,通過求導也能得到相同答案,但利用基本不等式會使計算更簡單)。
❷ 高中數學基本不等式解題技巧
1 、不等式的解題方法與技巧 解決絕對值問題(化簡、求值、方程、不等式、函數),把含絕對值的問題轉化為不含絕對值的問題。 具體轉化方法有:
(1)分類討論法:根據絕對值符號中的數或式子的正、零、負分情況去掉絕對值。
(2)零點分段討論法:適用於含一個字母的多個絕對值的情況。
(3)兩邊平方法:適用於兩邊非負的方程或不等式。