Ⅰ 解數學證明題的技巧有哪些
證明題有三種思考方式
● 正向思維
對於一般簡單的題目,我們正向思考,輕而易舉可以做出。這里就不詳細講述了。
● 逆向思維
顧名思義,就是從相反的方向思考問題。在初中數學中,逆向思維是非常重要的思維方式,在證明題中體現的更加明顯。
同學們認真讀完一道題的題干後,不知道從何入手,建議你從結論出發。
例如:
可以有這樣的思考過程:要證明某兩條邊相等,那麼結合圖形可以看出,只要證出某兩個三角形相等即可;要證三角形全等,結合所給的條件,看還缺少什麼條件需要證明,證明這個條件又需要怎樣做輔助線,這樣思考下去…
這樣我們就找到了解題的思路,然後把過程正著寫出來就可以了。
● 正逆結合
對於從結論很難分析出思路的題目,可以結合結論和已知條件認真的分析。
初中數學中,一般所給的已知條件都是解題過程中要用到的,所以可以從已知條件中尋找思路,比如給我們三角形某邊中點,我們就要想到是否要連出中位線,或者是否要用到中點倍長法。
給我們梯形,我們就要想到是否要做高,或平移腰,或平移對角線,或補形等等。正逆結合,戰無不勝。
證明題要用到哪些原理
要掌握初中數學幾何證明題技巧,熟練運用和記憶如下原理是關鍵。
下面歸類一下,多做練習,熟能生巧,遇到幾何證明題能想到採用哪一類型原理來解決問題。
一、證明兩線段相等
1.兩全等三角形中對應邊相等。
2.同一三角形中等角對等邊。
3.等腰三角形頂角的平分線或底邊的高平分底邊。
4.平行四邊形的對邊或對角線被交點分成的兩段相等。
5.直角三角形斜邊的中點到三頂點距離相等。
6.線段垂直平分線上任意一點到線段兩段距離相等。
7.角平分線上任一點到角的兩邊距離相等。
8.過三角形一邊的中點且平行於第三邊的直線分第二邊所成的線段相等。
9.同圓(或等圓)中等弧所對的弦或與圓心等距的兩弦或等圓心角、圓周角所對的弦相等。
10.圓外一點引圓的兩條切線的切線長相等或圓內垂直於直徑的弦被直徑分成的兩段相等。
11.兩前項(或兩後項)相等的比例式中的兩後項(或兩前項)相等。
12.兩圓的內(外)公切線的長相等。
13.等於同一線段的兩條線段相等。
二、證明兩個角相等
1.兩全等三角形的對應角相等。
2.同一三角形中等邊對等角。
3.等腰三角形中,底邊上的中線(或高)平分頂角。
4.兩條平行線的同位角、內錯角或平行四邊形的對角相等。
5.同角(或等角)的餘角(或補角)相等。
6.同圓(或圓)中,等弦(或弧)所對的圓心角相等,圓周角相等,弦切角等於它所夾的弧對的圓周角。
7.圓外一點引圓的兩條切線,圓心和這一點的連線平分兩條切線的夾角。
8.相似三角形的對應角相等。
9.圓的內接四邊形的外角等於內對角。
10.等於同一角的兩個角相等。
三、證明兩條直線互相垂直
1.等腰三角形的頂角平分線或底邊的中線垂直於底邊。
2.三角形中一邊的中線若等於這邊一半,則這一邊所對的角是直角。
3.在一個三角形中,若有兩個角互余,則第三個角是直角。
4.鄰補角的平分線互相垂直。
5.一條直線垂直於平行線中的一條,則必垂直於另一條。
6.兩條直線相交成直角則兩直線垂直。
7.利用到一線段兩端的距離相等的點在線段的垂直平分線上。
8.利用勾股定理的逆定理。
9.利用菱形的對角線互相垂直。
10.在圓中平分弦(或弧)的直徑垂直於弦。
11.利用半圓上的圓周角是直角。
四、證明兩直線平行
1.垂直於同一直線的各直線平行。
2.同位角相等,內錯角相等或同旁內角互補的兩直線平行。
3.平行四邊形的對邊平行。
4.三角形的中位線平行於第三邊。
5.梯形的中位線平行於兩底。
6.平行於同一直線的兩直線平行。
7.一條直線截三角形的兩邊(或延長線)所得的線段對應成比例,則這條直線平行於第三邊。
五、證明線段的和差倍分
1.作兩條線段的和,證明與第三條線段相等。
2.在第三條線段上截取一段等於第一條線段,證明餘下部分等於第二條線段。
3.延長短線段為其二倍,再證明它與較長的線段相等。
4.取長線段的中點,再證其一半等於短線段。
5.利用一些定理(三角形的中位線、含30度的直角三角形、直角三角形斜邊上的中線、三角形的重心、相似三角形的性質等)。
六、證明角的和差倍分
1.與證明線段的和、差、倍、分思路相同。
2.利用角平分線的定義。
3.三角形的一個外角等於和它不相鄰的兩個內角的和。
七、證明線段不等
1.同一三角形中,大角對大邊。
2.垂線段最短。
3.三角形兩邊之和大於第三邊,兩邊之差小於第三邊。
4.在兩個三角形中有兩邊分別相等而夾角不等,則夾角大的第三邊大。
5.同圓或等圓中,弧大弦大,弦心距小。
6.全量大於它的任何一部分。
八、證明兩角的不等
1.同一三角形中,大邊對大角。
2.三角形的外角大於和它不相鄰的任一內角。
3.在兩個三角形中有兩邊分別相等,第三邊不等,第三邊大的,兩邊的夾角也大。
4.同圓或等圓中,弧大則圓周角、圓心角大。
5.全量大於它的任何一部分。
九、證明比例式或等積式
1.利用相似三角形對應線段成比例。
2.利用內外角平分線定理。
3.平行線截線段成比例。
4.直角三角形中的比例中項定理即射影定理。
5.與圓有關的比例定理---相交弦定理、切割線定理及其推論。
6.利用比利式或等積式化得。
十、證明四點共圓
1.對角互補的四邊形的頂點共圓。
2.外角等於內對角的四邊形內接於圓。
3.同底邊等頂角的三角形的頂點共圓(頂角在底邊的同側)。
4.同斜邊的直角三角形的頂點共圓。
5.到頂點距離相等的各點共圓。
Ⅱ 在數學中有哪些比較經典而且奇妙的證明方法
1931年,奧地利數學家哥德爾,提出一條震驚學術界的定理——哥德爾不完備定理。該定理指出,我們目前的數學系統中,必定存在不能被證明也不能被證偽的定理。該定理一出,就粉碎了數學家幾千年的夢想——即建立完善的數學系統,從一些基本的公理出發,推導出一切數學的定理和公式。可哥德爾不完備定理指出:該系統不存在,因為其中一定存在,我們不能證明也不能證偽的「東西」,也就是數學系統不可能是完備的,至少它的完備性和相容性不能同時得到滿足。
Ⅲ 尋求所有常用的數學證明方法
證明命題的方法:
大多數命題都取下面兩種形式中的一種:
「若P,則Q」
P=>Q
「P,當且僅當Q」
P<=>Q
要證後一種。我們先證「P蘊涵Q」再證「Q蘊涵P」即可。
而證明「P蘊涵Q」通常有三種方法:
1。最直接的方法是,假設P使真的在設法去推導Q是真的。這里不必擔心P是假的的情況。因為「P蘊涵Q」自然是真的。(這涉及蘊涵的概念,相信你是清楚的)
2。第二種方法是寫出它的逆否「(非Q)蘊涵(非P)」然後證明它。
這時我們假定(非Q)是真的,然後設法推證非P是真的。
3。歸謬法。(反證法就是歸謬法!!!)
想真正弄清反證法,我們還得做些准備。
先看看什麼是矛盾吧,它的定義是精確的。
觀察P與(非P)這個命題。用真值表。
P
非P
P與(非P)
T
F
F
F
T
F
我們發現,無論P是T還是F,命題P與(非P)永遠是F.這時我們說P與(非P)是一個矛盾。
再看一個真值表,討論P與(非Q).
P
Q
非Q
P與(非Q)
非[P與(非Q)]
P蘊涵Q
T
T
F
F
T
T
T
F
T
T
F
F
F
T
F
F
T
T
F
F
T
F
T
T
我們發現非[P與(非Q)]和P蘊涵Q同T同F,他們是邏輯等價的。
現在我們可以討論反證法了。
運用反證法。假設P和非Q都是真的。然後尋找一個矛盾。由此斷定我們的假設是假的。即「非[P與(非Q)]」是真的。而這與
「P蘊涵Q
」等價。從而證明了P蘊涵Q真。
具體的證明需要運用具體數學知識,以上只是最一般的方法以及邏輯原理。
Ⅳ 數學證明題的八種方法是什麼
1、分析綜合法也就是要逆向推理,從題目要你證明的結論出發往回推理。看看結論是要證明角相等,還是邊相等。
結合題意選出其中的一種方法,然後再考慮用這種方法證明還缺少哪些條件,把題目轉換成證明其他的結論,通常缺少的條件會在第三步引申出的條件和題目中出現,這時再把這些條件綜合在一起,很條理的寫出證明過程。
2、逆推法從結論出發尋求證明方法。如2004年第15題是不等式證明題,該題只要應用不等式證明的一般步驟就能解決問題:即從結論出發構造函數,利用函數的單調性推出結論。
3、換元法。換元的實質是轉化,關鍵是構造元和設元,理論依據是等量代換,目的是變換研究對象,將問題移至新對象的知識背景中去研究,從而使非標准型問題標准化、復雜問題簡單化,變得容易處理。
公式具有抽象性,公式中的字母代表一定范圍內的無窮多個數。有的學生在學習公式時,可以在短時間內掌握,而有的學生卻要反來復去地體會,才能跳出千變萬化的數字關系的泥堆里。教師應明確告訴學生學習公式過程需要的步驟,使學生能夠迅速順利地掌握公式。
Ⅳ 解數學證明題的技巧有哪些
證明題有三種思考方式
● 正向思維
對於一般簡單的題目,我們正向思考,輕而易舉可以做出。這里就不詳細講述了。
● 逆向思維
顧名思義,就是從相反的方向思考問題。在初中數學中,逆向思維是非常重要的思維方式,在證明題中體現的更加明顯。
同學們認真讀完一道題的題干後,不知道從何入手,建議你從結論出發。
例如:
可以有這樣的思考過程:要證明某兩條邊相等,那麼結合圖形可以看出,只要證出某兩個三角形相等即可;要證三角形全等,結合所給的條件,看還缺少什麼條件需要證明,證明這個條件又需要怎樣做輔助線,這樣思考下去…
這樣我們就找到了解題的思路,然後把過程正著寫出來就可以了。
● 正逆結合
對於從結論很難分析出思路的題目,可以結合結論和已知條件認真的分析。
初中數學中,一般所給的已知條件都是解題過程中要用到的,所以可以從已知條件中尋找思路,比如給我們三角形某邊中點,我們就要想到是否要連出中位線,或者是否要用到中點倍長法。
給我們梯形,我們就要想到是否要做高,或平移腰,或平移對角線,或補形等等。正逆結合,戰無不勝。
證明題要用到哪些原理
要掌握初中數學幾何證明題技巧,熟練運用和記憶如下原理是關鍵。
下面歸類一下,多做練習,熟能生巧,遇到幾何證明題能想到採用哪一類型原理來解決問題。
一、證明兩線段相等
1.兩全等三角形中對應邊相等。
2.同一三角形中等角對等邊。
3.等腰三角形頂角的平分線或底邊的高平分底邊。
4.平行四邊形的對邊或對角線被交點分成的兩段相等。
5.直角三角形斜邊的中點到三頂點距離相等。
6.線段垂直平分線上任意一點到線段兩段距離相等。
7.角平分線上任一點到角的兩邊距離相等。
8.過三角形一邊的中點且平行於第三邊的直線分第二邊所成的線段相等。
9.同圓(或等圓)中等弧所對的弦或與圓心等距的兩弦或等圓心角、圓周角所對的弦相等。
10.圓外一點引圓的兩條切線的切線長相等或圓內垂直於直徑的弦被直徑分成的兩段相等。
11.兩前項(或兩後項)相等的比例式中的兩後項(或兩前項)相等。
12.兩圓的內(外)公切線的長相等。
13.等於同一線段的兩條線段相等。
二、證明兩個角相等
1.兩全等三角形的對應角相等。
2.同一三角形中等邊對等角。
3.等腰三角形中,底邊上的中線(或高)平分頂角。
4.兩條平行線的同位角、內錯角或平行四邊形的對角相等。
5.同角(或等角)的餘角(或補角)相等。
6.同圓(或圓)中,等弦(或弧)所對的圓心角相等,圓周角相等,弦切角等於它所夾的弧對的圓周角。
7.圓外一點引圓的兩條切線,圓心和這一點的連線平分兩條切線的夾角。
8.相似三角形的對應角相等。
9.圓的內接四邊形的外角等於內對角。
10.等於同一角的兩個角相等。
三、證明兩條直線互相垂直
1.等腰三角形的頂角平分線或底邊的中線垂直於底邊。
2.三角形中一邊的中線若等於這邊一半,則這一邊所對的角是直角。
3.在一個三角形中,若有兩個角互余,則第三個角是直角。
4.鄰補角的平分線互相垂直。
5.一條直線垂直於平行線中的一條,則必垂直於另一條。
6.兩條直線相交成直角則兩直線垂直。
7.利用到一線段兩端的距離相等的點在線段的垂直平分線上。
8.利用勾股定理的逆定理。
9.利用菱形的對角線互相垂直。
10.在圓中平分弦(或弧)的直徑垂直於弦。
11.利用半圓上的圓周角是直角。
四、證明兩直線平行
1.垂直於同一直線的各直線平行。
2.同位角相等,內錯角相等或同旁內角互補的兩直線平行。
3.平行四邊形的對邊平行。
4.三角形的中位線平行於第三邊。
5.梯形的中位線平行於兩底。
6.平行於同一直線的兩直線平行。
7.一條直線截三角形的兩邊(或延長線)所得的線段對應成比例,則這條直線平行於第三邊。
五、證明線段的和差倍分
1.作兩條線段的和,證明與第三條線段相等。
2.在第三條線段上截取一段等於第一條線段,證明餘下部分等於第二條線段。
3.延長短線段為其二倍,再證明它與較長的線段相等。
4.取長線段的中點,再證其一半等於短線段。
5.利用一些定理(三角形的中位線、含30度的直角三角形、直角三角形斜邊上的中線、三角形的重心、相似三角形的性質等)。
六、證明角的和差倍分
1.與證明線段的和、差、倍、分思路相同。
2.利用角平分線的定義。
3.三角形的一個外角等於和它不相鄰的兩個內角的和。
七、證明線段不等
1.同一三角形中,大角對大邊。
2.垂線段最短。
3.三角形兩邊之和大於第三邊,兩邊之差小於第三邊。
4.在兩個三角形中有兩邊分別相等而夾角不等,則夾角大的第三邊大。
5.同圓或等圓中,弧大弦大,弦心距小。
6.全量大於它的任何一部分。
八、證明兩角的不等
1.同一三角形中,大邊對大角。
2.三角形的外角大於和它不相鄰的任一內角。
3.在兩個三角形中有兩邊分別相等,第三邊不等,第三邊大的,兩邊的夾角也大。
4.同圓或等圓中,弧大則圓周角、圓心角大。
5.全量大於它的任何一部分。
九、證明比例式或等積式
1.利用相似三角形對應線段成比例。
2.利用內外角平分線定理。
3.平行線截線段成比例。
4.直角三角形中的比例中項定理即射影定理。
5.與圓有關的比例定理---相交弦定理、切割線定理及其推論。
6.利用比利式或等積式化得。
十、證明四點共圓
1.對角互補的四邊形的頂點共圓。
2.外角等於內對角的四邊形內接於圓。
3.同底邊等頂角的三角形的頂點共圓(頂角在底邊的同側)。
4.同斜邊的直角三角形的頂點共圓。
5.到頂點距離相等的各點共圓。
Ⅵ 聲稱超好證明結果花費三百年寫滿五百頁的數學證明是什麼
人們常用冰山上的一角,來形容在海里的浮冰淹沒在水下的那巨大體積。其實,在這個世界上,很多事情都是只露出一個簡單的表面,而在背後隱藏著極其復雜的機理。
懷爾斯因為證明費馬大定律,獲得了1996年的沃爾夫獎。按照他的貢獻,他理應獲得數學界的諾貝爾獎~菲爾茲獎。但是菲爾茲獎有一個規定,只獎勵年齡低於40歲的數學家。很可惜,安德魯懷爾斯已經超過這個界限了。但是他的貢獻太偉大了,所以菲爾茲獎的評選委員會決定給他一枚銀牌,這也是有史以來第1枚銀牌,而且也是最後一枚銀牌。從含金量來說,這枚銀牌比很多金牌含金量都高。
數學是上帝用來書寫大自然的語言!安德魯懷爾斯生於1953年的英國,他的父親是一位工程師。懷爾斯在10歲的時候就被費馬大定律所吸引,所以他選擇了從事數學作為終身職業。數學中所蘊含的優雅與哲理,超過了所有的粗淺哲學。如果你有孩子,可以培養一下他對數學的興趣,這對人生極有幫助。以下這2套書,適合從3到14歲的孩子。這套適合學齡前兒童培養邏輯思維,作為孩子進入數學王國的入門讀物。
Ⅶ 你見過最巧妙的數學證明是什麼
應該是勾股定理,因為這個證明的方法是運用一個正方形,然後將它切割成五個小方塊,這樣的話就能證明勾股定理。
Ⅷ 非常神奇的數學結論有哪些
1、存在無理數的無理數次方是有理數嗎?
廢話,肯定存在。例如,我們來考慮
很明顯很明顯
等於2是有理數了;
但是對於更一般的情況下判斷任意給一個無理數的無理數次方是有理數還是非常難的,目前沒有更有效的方法。
2、圓周率
圓周率本身是無理數,而且更神奇的是你的生日、銀行卡號、學號、身份證號等可能就包含在圓周率中的某一段中;
但是這還不是更神奇的事情。更神奇的地方是和概率論有著非常密切的關系。最典型的一個例子應該是18世紀法國數學家蒲豐的投針實驗,這個實驗是這樣的:假設在平坦的地面上畫著間距為單位1的平行線,把一根長度為單位1的針隨機扔在地上,問這根針與地面的平行線相交的概率為多少。答案非常出乎意料的是
,這個用到微積分的知識。
但是這還不是更神奇的事情。更神奇的是,
,這個級數的每一項都是有理分式,無數個有理數求和卻不是有理數而是無理數,並且這個無理數還和有關,它居然等於!當然這個公式對於下面這些公式來說還是弱爆了。
韋達給出了一個超漂亮的式子:
沃利斯也不甘示弱:
更有史上最天才的拉馬努金給出的(這個等式規律性非常強有木有):
等等等等有幾噸這種美感與智慧並存的結論!!!
這還不是更神奇的事情,更神奇的地方等待著面前的你去發掘!
3、存在一個不等式,它的解在平面上的分布圖形長的和該不等式一模一樣!!
這個我是在顧森的博客上看到的:2001年,在介紹一種全新的方程圖象繪制演算法時,塔珀(Jeff Tupper)構造了這樣一個有趣的不等式:
對於某個n,圖象在0<=x<=106,n<=y<=n+17的范圍內它的解的分布圖形是:
有木有長的一模一樣!!有木有長的一模一樣!!
4、在有些空間中,收斂序列可能不止收斂於一個點!
在潛意識里,任給一個收斂序列,它的收斂點只有一個,比如給一個序列它的通項為
,它只收斂於自然底數e。然而在我們的宇宙中,收斂並不是這么簡單,以上序列之所以只收斂於一個點是因為它是限制在實數空間中,除了實數空間,宇宙還包含了各種聞所未聞見所未見的空間。在拓撲學中對於收斂的定義是這樣:對於數列{Xn}來說,當n足夠大時,x的每一個領域都包含著Xn,那麼x就是Xn的收斂點。所以舉一個簡單的例子,平庸空間中的任何序列都收斂,更奇葩的是還收斂於這個空間中的任何一個點,由此還可以推出任何序列都收斂自身中的任何一個點,多麼不可思議!
5、給一個簡單的猜想
這里有一個很有趣的一個問題:從任給一個正整數開始,如果這個數是偶數,把它除以2;如果是奇數,則乘以3再加1,依次下去進行有限步,最後一定等於1。
這個操作起來蠻簡單,但是至今無人能證明,透露一下它的難度和「1+1」是一樣的!關於這個猜想有一個很逗的事情,它的廣為人知離不開日本的一位數學家角谷,所以該猜想也稱角谷猜想(盡管這不是角谷提出來的,所以這個猜想有很多名字科拉茲猜想、敘拉古猜想、哈斯演算法、烏拉姆問題and so on。。。。。說白了,你要是對傳播這個猜想有比較大的貢獻也可以以你的名字命名,最後名字太多了,國際統一將它稱為3x+1問題了,所以錯過了一次以自己名字命名問題的機會哈哈哈哈哈哈),當時角谷拿到這個問題後,前鼓後搗地搞出了一些名堂,然後就帶著自己的這些成果奔到美國常春藤作報告。然後常春藤的師生聽到這么簡單的問題居然還沒人能解決,於是信心滿滿的都去搞這個去了,然而幾個月過去他們師生還在沉迷這個問題,其它研究也不做,美國開始胡思亂想認為這個問題是拖慢國家數學進程的毒瘤於是禁止研究它了,於是這股熱流在美國漸漸消減,現在關注的人也不多了。
Ⅸ 請問,高中數學證明方法有哪些謝謝!
.比較法比較法是證明不等式的最基本、最重要的方法之一,它是兩個實數大小順序和運算性質的直接應用,比較法可分為差值比較法(簡稱為求差法)和商值比較法(簡稱為求商法)。 2.綜合法利用已知事實(已知條件、重要不等式或已證明的不等式)作為基礎,藉助不等式的性質和有關定理,經過逐步的邏輯推理,最後推出所要證明的不等式,其特點和思路是「由因導果」,從「已知」看「需知」,逐步推出「結論」。3.分析法分析法是指從需證的不等式出發,分析這個不等式成立的充分條件,進而轉化為判定那個條件是否具備,其特點和思路是「執果索因」,即從「未知」看「需知」,逐步靠攏「已知」。4.反證法有些不等式的證明,從正面證不好說清楚,可以從正難則反的角度考慮,即要證明不等式A>B,先假設A≤B,由題設及其它性質,推出矛盾,從而肯定A>B。凡涉及到的證明不等式為否定命題、惟一性命題或含有「至多」、「至少」、「不存在」、「不可能」等詞語時,可以考慮用反證法。 5.換元法換元法是對一些結構比較復雜,變數較多,變數之間的關系不甚明了的不等式可引入一個或多個變數進行代換,以便簡化原有的結構或實現某種轉化與變通,給證明帶來新的啟迪和方法。主要有兩種換元形式。(1)三角代換法:多用於條件不等式的證明,當所給條件較復雜,一個變數不易用另一個變數表示,這時可考慮三角代換,將兩個變數都有同一個參數表示。此法如果運用恰當,可溝通三角與代數的聯系,將復雜的代數問題轉化為三角問題根據具體問題,實施的三角代換方法有:①若x2+y2=1,可設x=cosθ,y=sinθ;②若x2+y2≤1,可設x=rcosθ,y=rsinθ(0≤r≤1);③對於含有的不等式,由於|x|≤1,可設x=cosθ;④若x+y+z=xyz,由tanA+tanB+tanC=tanAtan-BtanC知,可設x=taaA,y=tanB,z=tanC,其中A+B+C=π。(2)增量換元法:在對稱式(任意交換兩個字母,代數式不變)和給定字母順序(如a>b>c等)的不等式,考慮用增量法進行換元,其目的是通過換元達到減元,使問題化難為易,化繁為簡。如a+b=1,可以用a=1-t,b=t或a=1/2+t,b=1/2-t進行換元。 6.放縮法放縮法是要證明不等式A<B成立不容易,而藉助一個或多個中間變數通過適當的放大或縮小達到證明不等式的方法。放縮法證明不等式的理論依據主要有:(1)不等式的傳遞性;(2)等量加不等量為不等量;(3)同分子(分母)異分母(分子)的兩個分式大小的比較。常用的放縮技巧有:①舍掉(或加進)一些項;②在分式中放大或縮小分子或分母;③應用均值不等式進行放縮。
Ⅹ 有哪些數學證明非常有趣
數學上的難題很多很多,有很多數學難題幾百年都沒有得到解決。而數學家們也在不斷探索和沖鋒,以求解決這些問題。問題的提出是富有意義的,問題的探索和解決過程也是極富意義的。下面列了幾個猜想,歡迎大家一起交流和討論。
哥德巴赫猜想
等級:五顆星,數學王冠上的鑽石;
內容:哥德巴赫1742年給歐拉的信中哥德巴赫提出了以下猜想:任一大於2的偶數都可寫成兩個質數之和。但是哥德巴赫自己無法證明它,於是就寫信請教赫赫有名的大數學家歐拉幫忙證明,但是一直到死,歐拉也無法證明。
進展:1966年陳景潤證明了"1+2"成立,即"任一充分大的偶數都可以表示成二個素數的和,或是一個素數和一個半素數的和"。1956年,王元證明了「3+4」;同年,原蘇聯數學家阿·維諾格拉朵夫證明了「3+3」;1957年,王元又證明了「2+3」;潘承洞於1962年證明了「1+5」;1963年,潘承洞、巴爾巴恩與王元又都證明了「1+4」;1966年,陳景潤在對篩法作了新的重要改進後,證明了「1+2」。
黎曼猜想
等級:五顆星,巍峨山峰,屹立不倒;
內容:黎曼函數的所有的非平凡零點,實部都是1/2。1859年,黎曼被選為了柏林科學院的通信院士,之後他向柏林科學院提交了一篇題為「論小於給定數值的素數個數」的論文。這篇只有短短八頁的論文就是黎曼猜想的「誕生地」。
進展:大於等於五維的龐加萊猜想被斯蒂芬·斯梅爾證明;四維的龐加萊猜想被邁克爾·弗里德曼證明;三維的龐加萊猜想被俄羅斯數學家佩雷爾曼於2002-2003年證明。他們分別獲得1966年,1986年和2006年菲爾茲獎。2006年8月,有著數學界諾貝爾獎之稱的「菲爾茲獎」,授予了佩雷爾曼,以表彰他在幾何學上的貢獻。一枚印有阿基米德浮雕頭像的獎章和約1.35萬美元的獎金,同樣被拒之門外。對此,他給出的理由是「沒有路費來領獎」。
以上即是我所熟悉了解的幾個世界的著名數學難題,也期待大家介紹一下其他的數學難題!
(轉自頭條號-數學經緯網)