導航:首頁 > 數字科學 > 如何掌握數學題型

如何掌握數學題型

發布時間:2023-01-18 08:56:04

『壹』 如何學好數學題

數學是必考科目之一,故從初一開始就要認真地學習數學。那麼,怎樣才能學好數學呢?現介紹幾種方法以供參考:
一、課內重視聽講,課後及時復習。
新知識的接受,數學能力的培養主要在課堂上進行,所以要特點重視課內的學習效率,尋求正確的學習方法。上課時要緊跟老師的思路,積極展開思維預測下面的步驟,比較自己的解題思路與教師所講有哪些不同。特別要抓住基礎知識和基本技能的學習,課後要及時復習不留疑點。首先要在做各種習題之前將老師所講的知識點回憶一遍,正確掌握各類公式的推理過程,慶盡量回憶而不採用不清楚立即翻書之舉。認真獨立完成作業,勤於思考,從某種意義上講,應不造成不懂即問的學習作風,對於有些題目由於自己的思路不清,一時難以解出,應讓自己冷靜下來認真分析題目,盡量自己解決。在每個階段的學習中要進行整理和歸納總結,把知識的點、線、面結合起來交織成知識網路,納入自己的知識體系。
二、適當多做題,養成良好的解題習慣。
要想學好數學,多做題目是難免的,熟悉掌握各種題型的解題思路。剛開始要從基礎題入手,以課本上的習題為准,反復練習打好基礎,再找一些課外的習題,以幫助開拓思路,提高自己的分析、解決能力,掌握一般的解題規律。對於一些易錯題,可備有錯題集,寫出自己的解題思路和正確的解題過程兩者一起比較找出自己的錯誤所在,以便及時更正。在平時要養成良好的解題習慣。讓自己的精力高度集中,使大腦興奮,思維敏捷,能夠進入最佳狀態,在考試中能運用自如。實踐證明:越到關鍵時候,你所表現的解題習慣與平時練習無異。如果平時解題時隨便、粗心、大意等,往往在大考中充分暴露,故在平時養成良好的解題習慣是非常重要的。
三、調整心態,正確對待考試。
首先,應把主要精力放在基礎知識、基本技能、基本方法這三個方面上,因為每次考試占絕大部分的也是基礎性的題目,而對於那些難題及綜合性較強的題目作為調劑,認真思考,盡量讓自己理出頭緒,做完題後要總結歸納。調整好自己的心態,使自己在任何時候鎮靜,思路有條不紊,克服浮躁的情緒。特別是對自己要有信心,永遠鼓勵自己,除了自己,誰也不能把我打倒,要有自己不垮,誰也不能打垮我的自豪感。
在考試前要做好准備,練練常規題,把自己的思路展開,切忌考前去在保證正確率的前提下提高解題速度。對於一些容易的基礎題要有十二分把握拿全分;對於一些難題,也要盡量拿分,考試中要學會嘗試得分,使自己的水平正常甚至超常發揮。
由此可見,要把數學學好就得找到適合自己的學習方法,了解數學學科的特點,使自己進入數學的廣闊天地中去。
*****************************************************************************************************
一、 高中數學課的設置
高中數學內容豐富,知識面廣泛,將有:《代數》上、下冊、《立體幾何》和《平面解析幾何》四本課本,高一年級學習完《代數》上冊和《立體幾何》兩本書。高二將學習完《代數》下冊和《平面解析幾何》兩本書。一般地,在高一、高二全部學習完高中的所有高中三年的知識內容,高三進行全面復習,高三將有數學「會考」和重要的「高考」。
二、初中數學與高中數學的差異。
1、知識差異。
初中數學知識少、淺、難度容易、知識面笮。高中數學知識廣泛,將對初中的數學知識推廣和引伸,也是對初中數學知識的完善。如:初中學習的角的概念只是「0—1800」范圍內的,但實際當中也有7200和「—300」等角,為此,高中將把角的概念推廣到任意角,可表示包括正、負在內的所有大小角。又如:高中要學習《立體幾何》,將在三維空間中求一些幾何實體的體積和表面積;還將學習「排列組合」知識,以便解決排隊方法種數等問題。如:①三個人排成一行,有幾種排隊方法,( =6種);②四人進行乒乓球雙打比賽,有幾種比賽場次?(答: =3種)高中將學習統計這些排列的數學方法。初中中對一個負數開平方無意義,但在高中規定了i2=-1,就使-1的平方根為±i.即可把數的概念進行推廣,使數的概念擴大到復數范圍等。這些知識同學們在以後的學習中將逐漸學習到。
2、學習方法的差異。
(1)初中課堂教學量小、知識簡單,通過教師課堂教慢的速度,爭取讓全面同學理解知識點和解題方法,課後老師布置作業,然後通過大量的課堂內、外練習、課外指導達到對知識的反反復復理解,直到學生掌握。而高中數學的學習隨著課程開設多(有九們課學生同時學習),每天至少上六節課,自習時間三節課,這樣各科學習時間將大大減少,而教師布置課外題量相對初中減少,這樣集中數學學習的時間相對比初中少,數學教師將相初中那樣監督每個學生的作業和課外練習,就能達到相初中那樣把知識讓每個學生掌握後再進行新課。
(2)模仿與創新的區別。
初中學生模仿做題,他們模仿老師思維推理教多,而高中模仿做題、思維學生有,但隨著知識的難度大和知識面廣泛,學生不能全部模仿,即就是學生全部模仿訓練做題,也不能開拓學生自我思維能力,學生的數學成績也只能是一般程度。現在高考數學考察,旨在考察學生能力,避免學生高分低能,避免定勢思維,提倡創新思維和培養學生的創造能力培養。初中學生大量地模仿使學生帶來了不利的思維定勢,對高中學生帶來了保守的、僵化的思想,封閉了學生的豐富反對創造精神。如學生在解決:比較a與2a的大小時要不就錯、要不就答不全面。大多數學生不會分類討論。
3、學生自學能力的差異
初中學生自學那能力低,大凡考試中所用的解題方法和數學思想,在初中教師基本上已反復訓練,老師把學生要學生自己高度深刻理解的問題,都集中表現在他的耐心的講解和大量的訓練中,而且學生的聽課只需要熟記結論就可以做題(不全是),學生不需自學。但高中的知識面廣,知識要全部要教師訓練完高考中的習題類型是不可能的,只有通過較少的、較典型的一兩道例題講解去融會貫通這一類型習題,如果不自學、不靠大量的閱讀理解,將會使學生失去一類型習題的解法。另外,科學在不斷的發展,考試在不斷的改革,高考也隨著全面的改革不斷的深入,數學題型的開發在不斷的多樣化,近年來提出了應用型題、探索型題和開放型題,只有靠學生的自學去深刻理解和創新才能適應現代科學的發展。
其實,自學能力的提高也是一個人生活的需要,他從一個方面也代表了一個人的素養,人的一生只有18---24年時間是有導師的學習,其後半生,最精彩的人生是人在一生學習,靠的自學最終達到了自強。
4、思維習慣上的差異
初中學生由於學習數學知識的范圍小,知識層次低,知識面笮,對實際問題的思維受到了局限,就幾何來說,我們都接觸的是現實生活中三維空間,但初中只學了平面幾何,那麼就不能對三維空間進行嚴格的邏輯思維和判斷。代數中數的范圍只限定在實數中思維,就不能深刻的解決方程根的類型等。高中數學知識的多元化和廣泛性,將會使學生全面、細致、深刻、嚴密的分析和解決問題。也將培養學生高素質思維。提高學生的思維遞進性。
5、定量與變數的差異
初中數學中,題目、已知和結論用常數給出的較多,一般地,答案是常數和定量。學生在分析問題時,大多是按定量來分析問題,這樣的思維和問題的解決過程,只能片面地、局限地解決問題,在高中數學學習中我們將會大量地、廣泛地應用代數的可變性去探索問題的普遍性和特殊性。如:求解一元二次方程時我們採用對方程ax2+bx+c=0 (a≠0)的求解,討論它是否有根和有根時的所有根的情形,使學生很快的掌握了對所有一元二次方程的解法。另外,在高中學習中我們還會通過對變數的分析,探索出分析、解決問題的思路和解題所用的數學思想。
三、如何學好高中數學
良好的開端是成功的一半,高中數學課即將開始與初中知識有聯系,但比初中數學知識系統。高一數學中我們將學習函數,函數是高中數學的重點,它在高中數學中是起著提綱的作用,它融匯在整個高中數學知識中,其中有數學中重要的數學思想方法;如:函數與方程思想、數形結合思想等,它也是高考的重點,近年來,高考壓軸題都以函數題為考察方法的。高考題中與函數思想方法有關的習題占整個試題的60%以上。
1、 有良好的學習興趣
兩千多年前孔子說過:「知之者不如好之者,好之者不如樂之者。」意思說,干一件事,知道它,了解它不如愛好它,愛好它不如樂在其中。「好」和「樂」就是願意學,喜歡學,這就是興趣。興趣是最好的老師,有興趣才能產生愛好,愛好它就要去實踐它,達到樂在其中,有興趣才會形成學習的主動性和積極性。在數學學習中,我們把這種從自發的感性的樂趣出發上升為自覺的理性的「認識」過程,這自然會變為立志學好數學,成為數學學習的成功者。那麼如何才能建立好的學習數學興趣呢?
(1)課前預習,對所學知識產生疑問,產生好奇心。
(2)聽課中要配合老師講課,滿足感官的興奮性。聽課中重點解決預習中疑問,把老師課堂的提問、停頓、教具和模型的演示都視為欣賞音樂,及時回答老師課堂提問,培養思考與老師同步性,提高精神,把老師對你的提問的評價,變為鞭策學習的動力。
(3)思考問題注意歸納,挖掘你學習的潛力。
(4)聽課中注意老師講解時的數學思想,多問為什麼要這樣思考,這樣的方法怎樣是產生的?
(5)把概念回歸自然。所有學科都是從實際問題中產生歸納的,數學概念也回歸於現實生活,如角的概念、至交坐標系的產生、極坐標系的產生都是從實際生活中抽象出來的。只有回歸現實才能使對概念的理解切實可靠,在應用概念判斷、推理時會准確。
2、 建立良好的學習數學習慣。
習慣是經過重復練習而鞏固下來的穩重持久的條件反射和自然需要。建立良好的學習數學習慣,會使自己學習感到有序而輕松。高中數學的良好習慣應是:多質疑、勤思考、好動手、重歸納、注意應用。學生在學習數學的過程中,要把教師所傳授的知識翻譯成為自己的特殊語言,並永久記憶在自己的腦海中。另外還要保證每天有一定的自學時間,以便加寬知識面和培養自己再學習能力。
3、 有意識培養自己的各方面能力
數學能力包括:邏輯推理能力、抽象思維能力、計算能力、空間想像能力和分析解決問題能力共五大能力。這些能力是在不同的數學學習環境中得到培養的。在平時學習中要注意開發不同的學習場所,參與一切有益的學習實踐活動,如數學第二課堂、數學競賽、智力競賽等活動。平時注意觀察,比如,空間想像能力是通過實例凈化思維,把空間中的實體高度抽象在大腦中,並在大腦中進行分析推理。其它能力的培養都必須學習、理解、訓練、應用中得到發展。特別是,教師為了培養這些能力,會精心設計「智力課」和「智力問題」比如對習題的解答時的一題多解、舉一反三的訓練歸類,應用模型、電腦等多媒體教學等,都是為數學能力的培養開設的好課型,在這些課型中,學生務必要用全身心投入、全方位智力參與,最終達到自己各方面能力的全面發展。
四、其它注意事項
1、注意化歸轉化思想學習。
人們學習過程就是用掌握的知識去理解、解決未知知識。數學學習過程都是用舊知識引出和解決新問題,當新的知識掌握後再利用它去解決更新知識。初中知識是基礎,如果能把新知識用舊知識解答,你就有了化歸轉化思想了。可見,學習就是不斷地化歸轉化,不斷地繼承和發展更新舊知識。
2、學會數學教材的數學思想方法。
數學教材是採用蘊含披露的方式將數學思想溶於數學知識體系中,因此,適時對數學思想作出歸納、概括是十分必要的。概括數學思想一般可分為兩步進行:一是揭示數學思想內容規律,即將數學對象其具有的屬性或關系抽取出來,二是明確數學思想方法知識的聯系,抽取解決全體的框架。實施這兩步的措施可在課堂的聽講和課外的自學中進行。
課堂學習是數學學習的主戰場。課堂中教師通過講解、分解教材中的數學思想和進行數學技能地訓練,使高中學生學習所得到豐富的數學知識,教師組織的科研活動,使教材中的數學概念、定理、原理得到最大程度的理解、挖掘。如初中學習的相反數概念教學中,教師的課堂教學往往有以下理解:①從定義角度求3、-5的相反數,相反數是 的數是_____.②從數軸角度理解:什麼樣的兩點表示數是互為相反數的。(關於原點對稱的點)③從絕對值角度理解:絕對值_______的兩個數是互為相反數的。④相加為零的兩個數互為相反數嗎?這些不同角度的教學會開闊學生思維,提高思維品質。望同學們把握好課堂這個學習的主戰場。
五、學數學的幾個建議。
1、記數學筆記,特別是對概念理解的不同側面和數學規律,教師為備戰高考而加的課外知識。
2、建立數學糾錯本。把平時容易出現錯誤的知識或推理記載下來,以防再犯。爭取做到:找錯、析錯、改錯、防錯。達到:能從反面入手深入理解正確東西;能由果朔因把錯誤原因弄個水落石出、以便對症下葯;解答問題完整、推理嚴密。
3、記憶數學規律和數學小結論。
4、與同學建立好關系,爭做「小老師」,形成數學學習「互助組」。
5、爭做數學課外題,加大自學力度。
6、反復鞏固,消滅前學後忘。
7、學會總結歸類。可:①從數學思想分類②從解題方法歸類③從知識應用上分類

『貳』 高三數學應該怎樣整理題型有什麼好的辦法

引言:進入高中階段的學習,這時候學習壓力和學習氛圍都是比較緊張的。而且數學方面的學習更為重要,所以在數學上拉分是非常重要的,相差很大。這時候到高三了,數學應該怎樣整理題型呢?會有什麼樣的好方法,接下來跟著小編一起去了解一下吧。

都到高三了是學習的最後關鍵沖刺時刻了,所以這時候課堂一定要認真聽課,用心聽課要提高課堂上的聽課效率,要多動手多動腦,數學方面是思維的一個比拼,不僅要動手還要動腦,還要多練題才能熟能生巧。而且要懂得查缺補漏,對自己不會的要多做一些題,缺點以及還是不懂的地方就要及時問老師,只要在高考之前將這些知識掌握就不算晚。所以要將數學的概念弄清楚,而且概念和原理中需要應用題型也要掌握清楚,對一些情景設計題也要弄懂。對於粗心導致失分是最不應該的,因為你將知識點已經掌握了,由於粗心大意將結果算錯了,很吃虧的。所以在數學上面聽課要用心了。

『叄』 初中數學考試要掌握哪些答題的技巧

數學復習是一個系統的工程,許多同學都在想,如何才能掌握技巧,更好地利用寶貴有限的時間,讓自己能夠取得一個不錯的成績?

今天小編整理了初中各個題型的解題技巧給大家,希望大家能在將來中考獲得好成績。

初中數學解題方法總結

一、選擇題的解法

1、直接法:根據選擇題的題設條件,通過計算、推理或判斷,,最後得到題目的所求。

2、特殊值法:(特殊值淘汰法)有些選擇題所涉及的數學命題與字母的取值范圍有關;

在解這類選擇題時,可以考慮從取值范圍內選取某幾個特殊值,代入原命題進行驗證,然後淘汰錯誤的,保留正確的。

3、淘汰法:把題目所給的四個結論逐一代回原題的題干中進行驗證,把錯誤的淘汰掉,直至找到正確的答案。

4、逐步淘汰法:如果我們在計算或推導的過程中不是一步到位,而是逐步進行,既採用「走一走、瞧一瞧」的策略;

每走一步都與四個結論比較一次,淘汰掉不可能的,這樣也許走不到最後一步,三個錯誤的結論就被全部淘汰掉了。

5、數形結合法:根據數學問題的條件和結論之間的內在聯系,既分析其代數含義,又揭示其幾何意義;

使數量關系和圖形巧妙和諧地結合起來,並充分利用這種結合,尋求解題思路,使問題得到解決。

二、常用的數學思想方法

1、數形結合思想:就是根據數學問題的條件和結論之間的內在聯系,既分析其代數含義,又揭示其幾何意義;

使數量關系和圖形巧妙和諧地結合起來,並充分利用這種結合,尋求解體思路,使問題得到解決。

2、聯系與轉化的思想:事物之間是相互聯系、相互制約的,是可以相互轉化的。數學學科的各部分之間也是相互聯系,可以相互轉化的。

在解題時,如果能恰當處理它們之間的相互轉化,往往可以化難為易,化繁為簡。

如:代換轉化、已知與未知的轉化、特殊與一般的轉化、具體與抽象的轉化、部分與整體的轉化、動與靜的轉化等等。

3、分類討論的思想:在數學中,我們常常需要根據研究對象性質的差異,分各種不同情況予以考查;

這種分類思考的方法,是一種重要的數學思想方法,同時也是一種重要的解題策略。

4、待定系數法:當我們所研究的數學式子具有某種特定形式時,要確定它,只要求出式子中待確定的字母得值就可以了。

為此,把已知條件代入這個待定形式的式子中,往往會得到含待定字母的方程或方程組,然後解這個方程或方程組就使問題得到解決。

5、配方法:就是把一個代數式設法構造成平方式,然後再進行所需要的變化。

配方法是初中代數中重要的變形技巧,配方法在分解因式、解方程、討論二次函數等問題,都有重要的作用。

6、換元法:在解題過程中,把某個或某些字母的式子作為一個整體,用一個新的字母表示,以便進一步解決問題的一種方法。

換元法可以把一個較為復雜的式子化簡,把問題歸結為比原來更為基本的問題,從而達到化繁為簡,化難為易的目的。

7、分析法:在研究或證明一個命題時,又結論向已知條件追溯,既從結論開始,推求它成立的充分條件,這個條件的成立還不顯然;

則再把它當作結論,進一步研究它成立的充分條件,直至達到已知條件為止,從而使命題得到證明。這種思維過程通常稱為「執果尋因」

8、綜合法:在研究或證明命題時,如果推理的方向是從已知條件開始,逐步推導得到結論,這種思維過程通常稱為「由因導果」

9、演繹法:由一般到特殊的推理方法。

10、歸納法:由一般到特殊的推理方法。

11、類比法:眾多客觀事物中,存在著一些相互之間有相似屬性的事物,在兩個或兩類事物之間;

根據它們的某些屬性相同或相似,推出它們在其他屬性方面也可能相同或相似的推理方法。

類比法既可能是特殊到特殊,也可能一般到一般的推理。

三、函數、方程、不等式

常用的數學思想方法:

(1)數形結合的思想方法。

(2)待定系數法。

(3)配方法。

(4)聯系與轉化的思想。

(5)圖像的平移變換。

四、證明角的相等

1、對頂角相等。

2、角(或同角)的補角相等或餘角相等。

3、兩直線平行,同位角相等、內錯角相等。

4、凡直角都相等。

5、角平分線分得的兩個角相等。

6、同一個三角形中,等邊對等角。

7、等腰三角形中,底邊上的高(或中線)平分頂角。

8、平行四邊形的對角相等。

9、菱形的每一條對角線平分一組對角。

10、等腰梯形同一底上的兩個角相等。

11、關系定理:同圓或等圓中,若有兩條弧(或弦、或弦心距)相等,則它們所對的圓心角相等。

12、圓內接四邊形的任何一個外角都等於它的內對角。

13、同弧或等弧所對的圓周角相等。

14、弦切角等於它所夾的弧對的圓周角。

15、同圓或等圓中,如果兩個弦切角所夾的弧相等,那麼這兩個弦切角也相等。

16、全等三角形的對應角相等。

17、相似三角形的對應角相等。

18、利用等量代換。

19、利用代數或三角計算出角的度數相等

20、切線長定理:從圓外一點引圓的兩條切線,它們的切線長相等,並且這一點和圓心的連線平分兩條切線的夾角。

五、證明直線的平行或垂直

1、證明兩條直線平行的主要依據和方法:

(1)定義、在同一平面內不相交的兩條直線平行。

(2)平行定理、兩條直線都和第三條直線平行,這兩條直線也互相平行。

(3)平行線的判定:同位角相等(內錯角或同旁內角),兩直線平行。

(4)平行四邊形的對邊平行。

(5)梯形的兩底平行。

(6)三角形(或梯形)的中位線平行與第三邊(或兩底)

(7)一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,則這條直線平行於三角形的第三邊。

2、證明兩條直線垂直的主要依據和方法:

(1)兩條直線相交所成的四個角中,由一個是直角時,這兩條直線互相垂直。

(2)直角三角形的兩直角邊互相垂直。

(3)三角形的兩個銳角互余,則第三個內角為直角。

(4)三角形一邊的中線等於這邊的一半,則這個三角形為直角三角形。

(5)三角形一邊的平方等於其他兩邊的平方和,則這邊所對的內角為直角。

(6)三角形(或多邊形)一邊上的高垂直於這邊。

(7)等腰三角形的頂角平分線(或底邊上的中線)垂直於底邊。

(8)矩形的兩臨邊互相垂直。

(9)菱形的對角線互相垂直。

(10)平分弦(非直徑)的直徑垂直於這條弦,或平分弦所對的弧的直徑垂直於這條弦。

(11)半圓或直徑所對的圓周角是直角。

(12)圓的切線垂直於過切點的半徑。

(13)相交兩圓的連心線垂直於兩圓的公共弦。

『肆』 數學有些題的做題方法掌握不了怎麼辦

一、課內重視聽講,課後及時復習.
新知識的接受,數學能力的培養主要在課堂上進行,所以要特點重視課內的學習效率,尋求正確的學習方法.上課時要緊跟老師的思路,積極展開思維預測下面的步驟,比較自己的解題思路與教師所講有哪些不同.特別要抓住基礎知識和基本技能的學習,課後要及時復習不留疑點.首先要在做各種習題之前將老師所講的知識點回憶一遍,正確掌握各類公式的推理過程,慶盡量回憶而不採用不清楚立即翻書之舉.認真獨立完成作業,勤於思考,從某種意義上講,應不造成不懂即問的學習作風,對於有些題目由於自己的思路不清,一時難以解出,應讓自己冷靜下來認真分析題目,盡量自己解決.在每個階段的學習中要進行整理和歸納總結,把知識的點、線、面結合起來交織成知識網路,納入自己的知識體系.
二、適當多做題,養成良好的解題習慣.
要想學好數學,多做題目是難免的,熟悉掌握各種題型的解題思路.剛開始要從基礎題入手,以課本上的習題為准,反復練習打好基礎,再找一些課外的習題,以幫助開拓思路,提高自己的分析、解決能力,掌握一般的解題規律.對於一些易錯題,可備有錯題集,寫出自己的解題思路和正確的解題過程兩者一起比較找出自己的錯誤所在,以便及時更正.在平時要養成良好的解題習慣.讓自己的精力高度集中,使大腦興奮,思維敏捷,能夠進入最佳狀態,在考試中能運用自如.實踐證明:越到關鍵時候,你所表現的解題習慣與平時練習無異.如果平時解題時隨便、粗心、大意等,往往在大考中充分暴露,故在平時養成良好的解題習慣是非常重要的.
先從基礎抓起!因為數學難題都是綜合性很強的,只有掌握牢了基礎概念,才能運用自如!至於做題目不靈活,那就要多思考,不要為了做題而做題,不要單純題海戰術,多對比那些好的解法,多多思考自己解題時候為什麼自己沒想到這些方法,然後總結歸納,總而言之,需要不斷練習!勤於思考,一題多想幾個解答的方法,多做些一題多解的題目,多思考,就能讓自己的思維發散,做題就會靈活!
總而言之,要學好數學,首先是基礎扎實,要鞏固基礎;其次,針對你說的不靈活的問題,那隻能是勤於思考,多培養自己的發散思維,這個很重要!

『伍』 做數學題有何技巧方法

數學應用問題較好地考察了學生閱讀理解能力與日常生活體驗,同時又考察了學生獲取信息後的抽象概括與建模能力,判斷決策能力。那麼接下來給大家分享一些關於做數學題有何技巧 方法 ,希望對大家有所幫助。

做數學題有何技巧方法

1. 觀察與實驗

( 1 )觀察法:有目的有計劃的通過視覺直觀的發現數學對象的規律、性質和解決問題的途徑。

( 2 )實驗法:實驗法是有目的的、模擬的創設一些有利於觀察的數學對象,通過觀察研究將復雜的問題直觀化、簡單化。它具有直觀性強,特徵清晰,同時可以試探解法、檢驗結論的重要優勢。

2. 比較與分類

( 1 )比較法

是確定事物共同點和不同點的思維方法。在數學上兩類數學對象必須有一定的關系才好比較。我們常比較兩類數學對象的相同點、相異點或者是同異綜合比較。

( 2 )分類的方法

分類是在比較的基礎上,依據數學對象的性質的異同,把相同性質的對象歸入一類,不同性質的對象歸為不同類的思維方法。如上圖中一次函數的 k 在不等於零的情況下的分類是大於零和小於零體現了不重不漏的原則。

3 .特殊與一般

( 1 )特殊化的方法

特殊化的方法是從給定的區域內縮小范圍,甚至縮小到一個特殊的值、特殊的點、特殊的圖形等情況,再去考慮問題的解答和合理性。

( 2 )一般化的方法

4. 聯想與猜想

( 1 )類比聯想

類比就是根據兩個對象或兩類事物間存在著的相同或不同屬性,聯想到另一事物也可能具有某種屬性的思維方法。

通過類比聯想可以發現新的知識;通過類比聯想可以尋求到數學解題的方法和途徑:

( 2 )歸納猜想

牛頓說過:沒有大膽的猜想就沒有偉大的發明。猜想可以發現真理,發現論斷;猜想可以預見證明的方法和思路。初中數學主要是對命題的條件觀察得出對結論的猜想,或對條件和結論的觀察提出解決問題的方案與方法的猜想。

歸納是對同類事物中的所蘊含的同類性或相似性而得出的一般性結論的思維過程。歸納有完全歸納和不完全歸納。完全歸納得出的猜想是正確的,不完全歸納得出的猜想有可能正確也有可能錯誤,因此作為結論是需要證明的。關鍵是猜之有理、猜之有據。

5. 換元與配方

( 1 )換元法

解數學題時,把某個式子看成一個整體,用一個變數去代替它,從而使問題得到簡化,這叫換元法。換元的實質是轉化,關鍵是構造元和設元,理論依據是等量代換,目的是變換研究對象,將問題移至新對象的知識背景中去研究,從而使非標准型問題標准化、復雜問題簡單化,變得容易處理。

換元法又稱輔助元素法、變數代換法。通過引進新的變數,可以把分散的條件聯系起來,隱含的條件顯露出來,或者把條件與結論聯系起來。或者變為熟悉的形式,把復雜的計算和推證簡化。

我們使用換元法時,要遵循有利於運算、有利於標准化的原則,換元後要注重新變數范圍的選取,一定要使新變數范圍對應於原變數的取值范圍,不能縮小也不能擴大。 你可以先觀察算式,你可以發現這種要換元法的算式中總是有相同的式子,然後把他們用一個字母代替,算出答案,然後答案中如果有這個字母,就把式子帶進去,計算就出來啦。

( 2 )配方法

配方法是對數學式子進行一種定向變形(配成「完全平方」)的技巧,通過配方找到已知和未知的聯系,從而化繁為簡。何時配方,需要我們適當預測,並且合理運用「裂項」與「添項」、「配」與「湊」的技巧,從而完成配方。有時也將其稱為「湊配法」。最常見的配方是進行恆等變形,使數學式子出現完全平方。它主要適用於:已知或者未知中含有二次方程、二次不等式、二次函數、二次代數式的討論與求解。配方法使用的最基本的配方依據是二項完全平方公式 (a + b) 2 = a 2 + 2ab + b 2 ,將這個公式靈活運用,可得到各種基本配方形式

6. 構造法與待定系數法

( 1 )構造法所謂構造性的方法就是數學中的概念和方法按固定的方式經有限個步驟能夠定義的概念和能夠實現的方法。常見的有構造函數,構造圖形,構造恆等式。平面幾何裡面的添輔助線法就是常見的構造法。構造法解題有:直接構造、變更條件構造和變更結論構造等途徑。

( 2 )待定系數法:將一個多項式表示成另一種含有待定系數的新的形式,這樣就得到一個恆等式。然後根據恆等式的性質得出系數應滿足的方程或方程組,其後通過解方程或方程組便可求出待定的系數,或找出某些系數所滿足的關系式,這種解決問題的方法叫做待定系數法。

7. 公式法與反證法

( 1 )公式法

利用公式解決問題的方法。初中最常用的有一元二次方程求根時使用求根公式的方法;完全平方公式的方法等。如下面一組題就是完全平方公式的應用:

( 2 )反證法是「間接證明法」一類,即:肯定題設而否定結論,從而得出矛盾,就可以肯定命題的結論的正確性,從而使命題獲得了證明。

中學數學新題型解題方法和技巧

1. 數學探索題

所謂探索題就是從問題給定的題設條件中探究其相應的結論並加以證明,或從給定的題目要求中探究相應的必需具備的條件、解決問題的途徑。

條件探索題:解答策略之一是將題設和結論視為已知,同時推理,在演繹的過程中尋找出相應所需的條件。

結論探索題:通常指結論不確定不唯一,或結論需通過類比、引申、推廣,或給出特例需通過歸納得出一般結論。可以先猜測再去證明;也可以尋求具體情況下的結論再證明;或直接演繹推證。

規律探索題:實際就是探索多種解決問題的途徑,制定多種解題的策略。

活動型探索題:讓學生參與一定的 社會實踐 ,在課內和課外的活動中,通過探究完成問題解決。

推廣型探索題:將一個簡單的問題,加以推廣,可產生新的結論,在初中教學中常見。如平行四邊形的判定,就可以產生許多新的推廣,一方面是自身的推廣,一方面可以延伸到菱形和正方形中。

探索是數學的生命線,解探索題是一種富有創造性的思維活動,一種數學形式的探索絕不是單一的 思維方式 的結果,而是多種思維方式的聯系和滲透,這樣可使學生在學習數學的過程中敢於質疑、提問、 反思 、推廣。通過探索去經歷數學發現、數學探究、數學創造的過程,體會創造帶來的快樂。

2. 數學情境題

情境題是以一段生活實際、 故事 、歷史、游戲與數學問題、數學思想和方法於情境中。這類問題往往生動有趣,激發學生強烈的研究動機,但同時數學情景題又有信息量大,開放性強的特點,因此需要學生能從場景中提煉出數學問題,同時經歷了藉助數學知識研究實際問題的數學化過程。

如老師在講有理數的混合運算時,

3. 數學開放題

數學開放題是相對於傳統的封閉題而言的一種新題型,其特徵是題目的條件不充分,或沒有確定的結論,也正因為這樣,所以開放題的解題策略往往也是多種多樣的。

( 1 )數學開放題一般具有下列特徵

①不確定性:所提的問題常常是不確定的和一般性的,其背景情況也是用一般詞語來描述的,因此需收集其他必要的信息,才能著手解的題目。

②探究性:沒有現成的解題模式,有些答案可能易於直覺地被發現,但是求解過程中往往需要從多個角度進行思考和探索。

③非完備性:有些問題的答案是不確定的,存在著多樣的解答,但重要的還不是答案本身的多樣性,而在於尋求解答的過程中學生的認知結構的重建。

④發散性:在求解過程中往往可以引出新的問題,或將問題加以推廣,找出更一般、更概括性的結論。常常通過實際問題提出,學生必須用數學語言將其數學化,也就是建立數學模型。

⑤發展性:能激起多數學生的好奇性,全體學生都可以參與解答過程。

⑥創新性:教師難以用注入式進行教學,學生能自然地主動參與,教師在解題過程中的地位是示範者、啟發者、鼓勵者、合作者。

( 2 )對數學開放題的分類

從構成數學題系統的四要素(條件、依據、方法、結論)出發,定性地可分成四類;如果尋求的答案是數學題的條件,則稱為條件開放題;如果尋求的答案是依據或方法,則稱為策略開放題;如果尋求的答案是結論,則稱為結論開放題;如果數學題的條件、解題策略或結論都要求解題者在給定的情境中自行設定與尋找,則稱為綜合開放題。

從學生的學習生活和熟悉的事物中收集材料,設計成各種形式的數學開放性問題,意在開放學生的思路,開放學生潛在的學習能力,開放性數學問題給不同層次的學生學好數學創設了機會,多種解題策略的應用,有力地發展了學生的 創新思維 ,培養了學生的創新技能,提高了學生的創新能力。

( 3 )以數學開放題為載體的教學特徵

①師生關系開放:教師與學生成為問題解決的共同合作者和研究者

②教學內容開放:開放題往往條件不完全、或結論不完全,需要收集信息加以分析和研究,給數學留下了創新的空間。

③教學過程的開放性:由於研究的內容的開放性可以激起學生的好奇心、同時由於問題的開放性,就沒有現成的解題模式,因此就會留下想像的空間,使所有的學生都可參與想像和解答。

( 4 )開放題的 教育 價值

有利於培養學生良好的思維品質;

有助於學生主體意識的形成;

有利於全體學生的參與,實現教學的民主性和合作性;

有利於學生體驗成功、樹立信心,增強學習的興趣;

有助於提高學生解決問題的能力。

4. 數學建模題(初中數學建模題也可以看作是數學應用題)

數學新課程標准指出 : 要學生會應用所學知識解決實際問題 , 能適應社會日常生活和生產勞動的基本需要。初中數學的學習目的之一 , 就是培養學生解決實際問題的能力 , 要求學生會分析和解決生產、生活中的數學問題 , 形成善於應用數學的意識和能力。從各省市的中考數學命題來看 , 也更關注學生靈活運用數學知識解決實際問題能力的考查 , 可以說培養學生解答應用題的能力是使學生能夠運用所學數學知識解決實際問題的基本途徑之一

數學思想方法在解題中有不可忽視的作用

1. 函數與方程的思想

函數與方程的思想是中學數學最基本的思想。所謂函數的思想是指用運動變化的觀點去分析和研究數學中的數量關系,建立函數關系或構造函數,再運用函數的圖像與性質去分析、解決相關的問題。而所謂方程的思想是分析數學中的等量關系,去構建方程或方程組,通過求解或利用方程的性質去分析解決問題。

2. 數形結合的思想

數與形在一定的條件下可以轉化。如某些代數問題、三角問題往往有幾何背景,可以藉助幾何特徵去解決相關的代數三角問題;而某些幾何問題也往往可以通過數量的結構特徵用代數的方法去解決。因此數形結合的思想對問題的解決有舉足輕重的作用。

3. 分類討論的思想

分類討論的思想之所以重要,原因一是因為它的邏輯性較強,原因二是因為它的知識點的涵蓋比較廣,原因三是因為它可培養學生的分析和解決問題的能力。原因四是實際問題中常常需要分類討論各種可能性。

解決分類討論問題的關鍵是化整為零,在局部討論降低難度。常見的類型:類型 1 :由數學概念引起的的討論,如實數、有理數、絕對值、點(直線、圓)與圓的位置關系等概念的分類討論;類型 2 :由數學運算引起的討論,如不等式兩邊同乘一個正數還是負數的問題;類型 3 :由性質、定理、公式的限制條件引起的討論,如一元二次方程求根公式的應用引起的討論;類型 4 :由圖形位置的不確定性引起的討論,如直角、銳角、鈍角三角形中的相關問題引起的討論。類型 5 :由某些字母系數對方程的影響造成的分類討論,如二次函數中字母系數對圖象的影響,二次項系數對圖象開口方向的影響,一次項系數對頂點坐標的影響,常數項對截距的影響等。

分類討論思想是對數學對象進行分類尋求解答的一種思想方法,其作用在於克服思維的片面性,全面考慮問題。分類的原則:分類不重不漏。分類的步驟:①確定討論的對象及其范圍;②確定分類討論的分類標准;③按所分類別進行討論;④歸納小結、綜合得出結論。注意動態問題一定要先畫動態圖。

4 .轉化與化歸的思想

轉化與化歸市中學數學最基本的數學思想之一,數形結合的思想體現了數與形的轉化;函數與方程的思想體現了函數、方程、不等式之間的相互轉化;分類討論思想體現了局部與整體的相互轉化,所以以上三種思想也是轉化與化歸思想的具體呈現。

但是轉化包括等價轉化和非等價轉化,等價轉化要求在轉化的過程中前因和後果是充分的也是必要的;不等價轉化就只有一種情況,因此結論要注意檢驗、調整和補充。轉化的原則是將不熟悉和難解的問題轉為熟知的、易解的和已經解決的問題,將抽象的問題轉為具體的和直觀的問題;將復雜的轉為簡單的問題;將一般的轉為特殊的問題;將實際的問題轉為數學的問題等等使問題易於解決。

但是轉化包括等價轉化和非等價轉化,等價轉化要求在轉化的過程中前因和後果是充分的也是必要的;不等價轉化就只有一種情況,因此結論要注意檢驗、調整和補充。轉化的原則是將不熟悉和難解的問題轉為熟知的、易解的和已經解決的問題,將抽象的問題轉為具體的和直觀的問題;將復雜的轉為簡單的問題;將一般的轉為特殊的問題;將實際的問題轉為數學的問題等等使問題易於解決。

常見的轉化方法有

( 1 )直接轉化法:把原問題直接轉化為基本定理、基本公式或基本圖形問題

( 2 )換元法:運用「換元」把式子轉化為有理式或使整式降冪等,把較復雜的函數、方程、不等式問題轉化為易於解決的基本問題 . ?

( 3 )數形結合法:研究原問題中數量關系(解析式)與空間形式(圖形)關系,通過互相變換獲得轉化途徑 . ?

( 4 )等價轉化法:把原問題轉化為一個易於解決的等價命題,達到化歸的目的 . ?

( 5 )特殊化方法:把原問題的形式向特殊化形式轉化,並證明特殊化後的問題,使結論適合原問題 .

( 6 )構造法:「構造」一個合適的數學模型,把問題變為易於解決的問題 .

( 7 )坐標法:以坐標系為工具,用計算方法解決幾何問題也是轉化方法的一個重要途徑

轉化與化歸的指導思想?

( 1 )把什麼問題進行轉化,即化歸對象 . ?

( 2 )化歸到何處去,即化歸目標 . ?

( 3 )如何進行化歸,即化歸方法 . ?

化歸與轉化思想是一切數學思想方法的核心 .


做數學題有何技巧方法相關 文章 :

★ 做數學選擇題的十種技巧

★ 做六年級數學題的學習方法和做題方法

★ 做數學題的解題技巧方法高考

★ 做小學數學作業各類題型的方法

★ 學好數學的方法和技巧有哪些

★ 學好數學方法和技巧是什麼

★ 做數學蒙題的技巧

★ 做數學選擇題的技巧

★ 數學選擇題八大解題方法

『陸』 怎樣才能掌握學數學的技巧

1.學好數學要抓住三個「基本」:基本的概念要清楚,基本的規律要熟悉,基本的方法要熟練。

2.做完題目後一定要認真總結,做到舉一反三,這樣,以後遇到同一類的問題是就不會花費太多的時間和精力了。

3.一定要全面了解數學概念,不能以偏概全。

4.學習概念的最終目的是能運用概念來解決具體問題,因此,要主動運用所學的數學概念來分析,解決有關的數學問題。

5.要掌握各種題型的解題方法,在練習中有意識的地去總結,慢慢地培養適合自己的分析習慣。

6.要主動提高綜合分析問題的能力,藉助文字閱讀去分析理解。

7.在學習中,要有意識地注意知識的遷移,培養解決問題的能力。

8.要將所學知識貫穿在一起形成系統,我們可以運用類比聯系法。

9.將各章節中的內容互相聯系,不同章節之間互相類比,真正將前後知識融會貫通,連為一體,這樣能幫助我們系統深刻地理解知識體系和內容。

10.在數學學習中可以利用口訣將相近的概念或規律進行比較,搞清楚它們的相同點,區別和聯系,從而加深理解和記憶。弄清數學知識間的相互聯系,透徹理解概念,知道其推導過程,使知識條理化,系統化。

11.學習數學,不僅要關注題型,更要關注典型題型。

12.對於數學學科中的某些原理,定理,公式,不僅要記住它的結論,而且要了解這個結論是如何得出的。

13.學習數學,要熟記並正確地敘述概念和規律性內容。

14.在學習中要注意理解,開拓思路,變抽象為具體,逐漸培養自己學習數學的興趣。

15.適當地對概念進行分類,可以使所學的內容化繁為簡,重點突出,脈絡分明,便於進行分析,比較,綜合,概念。

16.數學學習最忌諱的就是對所學的知識模糊不清,各知識點混淆在一起,為了避免這一狀況,同學們要學會寫「知識結構小結」。

17.學會對題型題目的拆分和組合,學會從多角度,多方面來分析和解決典型題目,從中概括出基本題型和基本規律方法。

18.將同一類數學知識根據相互之間的聯系歸納成一個有機整體,從而達到整體記憶的目的。

19.結合各類題的特點進行專項性訓練,多與同學和老師交流,溝通,汲取他人的智慧,節約時間,提高做題速度和質量,提高應變能力。

20.學習數學要循序漸進,只要打好了根基,才能逐步提高。

21.解決數學問題,關鍵是建立正確的數學理念,要從數學角度去思考,利用數學規律去解決。

22.上課認真聽講是打好數學基礎的重要環節,也是牢固掌握基礎知識的根本途徑。

23.在解決問題時,我們可以試著用不同的方法,如假設法,特殊值法,整體法。

24.深刻理解知識點,仔細閱讀課本,認真聽講,理解聯系實際。

25.認真聽講,一方面能更好地掌握知識的來龍去脈,加深理解,另一方面,還能學會老師分析問題,解決問題的思路方法。

『柒』 高考數學常考題型答題技巧與方法有哪些

高考像漫漫人生路上的一道坎,無論成敗與否,我認為現在都不重要了,重要的是要 總結 高考的得與失,以便在今後的人生之路上邁好每一個坎!下面就是我給大家帶來的高考數學常考題型答題技巧與 方法 ,希望大家喜歡!

高考數學常考題型答題技巧與方法

1、解決絕對值問題

主要包括化簡、求值、方程、不等式、函數等題,基本思路是:把含絕對值的問題轉化為不含絕對值的問題。

具體轉化方法有:

①分類討論法:根據絕對值符號中的數或式子的正、零、負分情況去掉絕對值。

②零點分段討論法:適用於含一個字母的多個絕對值的情況。

③兩邊平方法:適用於兩邊非負的方程或不等式。

④幾何意義法:適用於有明顯幾何意義的情況。

2、因式分解

根據項數選擇方法和按照一般步驟是順利進行因式分解的重要技巧。因式分解的一般步驟是:

提取公因式

選擇用公式

十字相乘法

分組分解法

拆項添項法

3、配方法

利用完全平方公式把一個式子或部分化為完全平方式就是配方法,它是數學中的重要方法和技巧。配方法的主要根據有:

4、換元法

解某些復雜的特型方程要用到「換元法」。換元法解方程的一般步驟是:

設元→換元→解元→還元

5、待定系數法

待定系數法是在已知對象形式的條件下求對象的一種方法。適用於求點的坐標、函數解析式、曲線方程等重要問題的解決。其解題步驟是:①設②列③解④寫

6、復雜代數等式

復雜代數等式型條件的使用技巧:左邊化零,右邊變形。

①因式分解型:

(-----)(----)=0兩種情況為或型

②配成平方型:

(----)2+(----)2=0兩種情況為且型

7、數學中兩個最偉大的解題思路

(1)求值的思路列欲求值字母的方程或方程組

(2)求取值范圍的思路列欲求范圍字母的不等式或不等式組

8、化簡二次根式

基本思路是:把√m化成完全平方式。即:

9、觀察法

10、代數式求值

方法有:

(1)直接代入法

(2)化簡代入法

(3)適當變形法(和積代入法)

注意:當求值的代數式是字母的「對稱式」時,通常可以化為字母「和與積」的形式,從而用「和積代入法」求值。

11、解含參方程

方程中除過未知數以外,含有的 其它 字母叫參數,這種方程叫含參方程。解含參方程一般要用『分類討論法』,其原則是:

(1)按照類型求解

(2)根據需要討論

(3)分類寫出結論

12、恆相等成立的有用條件

(1)ax+b=0對於任意x都成立關於x的方程ax+b=0有無數個解a=0且b=0。

(2)ax2+bx+c=0對於任意x都成立關於x的方程ax2+bx+c=0有無數解a=0、b=0、c=0。

13、恆不等成立的條件

由一元二次不等式解集為R的有關結論容易得到下列恆不等成立的條件:

14、平移規律

圖像的平移規律是研究復雜函數的重要方法。平移規律是:

15、圖像法

討論函數性質的重要方法是圖像法——看圖像、得性質。

定義域圖像在X軸上對應的部分

值域圖像在Y軸上對應的部分

單調性從左向右看,連續上升的一段在X軸上對應的區間是增區間;從左向右看,連續下降的一段在X軸上對應的區間是減區間。

最值圖像點處有值,圖像最低點處有最小值

奇偶性關於Y軸對稱是偶函數,關於原點對稱是奇函數

16、函數、方程、不等式間的重要關系

方程的根

函數圖像與x軸交點橫坐標

不等式解集端點

17、一元二次不等式的解法

一元二次不等式可以用因式分解轉化為二元一次不等式組去解,但比較復雜;它的簡便的實用解法是根據「三個二次」間的關系,利用二次函數的圖像去解。具體步驟如下:

二次化為正

判別且求根

畫出示意圖

解集橫軸中

18、一元二次方程根的討論

一元二次方程根的符號問題或m型問題可以利用根的判別式和根與系數的關系來解決,但根的一般問題、特別是區間根的問題要根據「三個二次」間的關系,利用二次函數的圖像來解決。「圖像法」解決一元二次方程根的問題的一般思路是:

題意

二次函數圖像

不等式組

不等式組包括:a的符號;△的情況;對稱軸的位置;區間端點函數值的符號。

19、基本函數在區間上的值域

我們學過的一次函數、反比例函數、二次函數等有名稱的函數是基本函數。基本函數求值域或最值有兩種情況:

(1)定義域沒有特別限制時---記憶法或結論法;

(2)定義域有特別限制時---圖像截斷法,一般思路是:

畫出圖像

截出一斷

得出結論

20、最值型應用題的解法

應用題中,涉及「一個變數取什麼值時另一個變數取得值或最小值」的問題是最值型應用題。解決最值型應用題的基本思路是函數思想法,其解題步驟是:

設變數

列函數

求最值

寫結論

21、穿線法

穿線法是解高次不等式和分式不等式的方法。其一般思路是:

首項化正

求根標根

右上起穿

奇穿偶回

注意:①高次不等式首先要用移項和因式分解的方法化為「左邊乘積、右邊是零」的形式。②分式不等式一般不能用兩邊都乘去分母的方法來解,要通過移項、通分合並、因式分解的方法化為「商零式」,用穿線法解。

高考數學常考題型答題技巧與方法有哪些相關 文章 :

1. 2019高考數學選擇題萬能答題技巧及方法

2. 高中數學常考題型答題技巧與方法及順口溜

3. 高考數學必考題型以及題型分析

4. 高考數學選擇題答題技巧有哪些

5. 2017高考數學常考的題型總結

6. 2017高考常考數學題型歸納

7. 高考數學答題技巧及復習方法

8. 高考數學不同題型的答題技巧

9. 高考數學的核心考點及答題技巧方法


『捌』 高考數學題型與技巧有哪些

內容如下:

1、掌握分類計數原理與分步計數原理,並能用它們分析和解決一些簡單的應用問題。

2、理解排列的意義,掌握排列數計算公式,並能用它解決一些簡單的應用問題。

3、理解組合的意義,掌握組合數計算公式和組合數的性質,並能用它們解決一些簡單的應用問題。

4、掌握二項式定理和二項展開式的性質,並能用它們計算和證明一些簡單的問題。

5、了解隨機事件的發生存在著規律性和隨機事件概率的意義。

6、了解等可能性事件的概率的意義,會用排列組合的基本公式計算一些等可能性事件的概率。

7、了解互斥事件、相互獨立事件的意義,會用互斥事件的概率加法公式與相互獨立事件的概率乘法公式計算一些事件的概率。

8、會計算事件在n次獨立重復試驗中恰好發生k次的概率。

『玖』 高考數學題型與技巧有哪些

高考數學必考題型及答題技巧如下:

1、函數或方程或不等式的題目,先直接思考後建立三者的聯系。首先考慮定義域,其次使用「三合一定理」。

2、如果在方程或是不等式中出現超越式,優先選擇數形結合的思想方法。

3、面對含有參數的初等函數來說,在研究的時候應該抓住參數沒有影響到的不變的性質。如所過的定點,二次函數的對稱軸或是。

4、解析幾何。高考的難點,運算量大,一般含參數,高考對數學基礎知識的考查,既全面又突出重點,扎實的數學基礎是成功解題的關鍵。

5、求參數的取值范圍,應該建立關於參數的等式或是不等式,用函數的定義域或是值域或是解不等式完成,在對式子變形的過程中,優先選擇分離參數的方法。

6、恆成立問題或是它的反面,可以轉化為最值問題,注意二次函數的應用,靈活使用閉區間上的最值,分類討論的思想,分類討論應該不重復不遺漏。

7、圓錐曲線的題目優先選擇它們的定義完成,直線與圓錐曲線相交問題,若與弦的中點有關,選擇設而不求點差法,與弦的中點無關,選擇韋達定理公式法;使用韋達定理必須先考慮是否為二次及根的判別式。

『拾』 怎樣學好數學的秘訣

很多同學對學習數學都感到頭痛,其實學好數學是要講 方法 的。下面是我為大家整理的關於怎樣學好數學的秘訣,希望對您有所幫助。歡迎大家閱讀參考學習!

怎樣學好數學的秘訣

怎樣學好數學秘訣一、學好數學要抓住三個「基本」:基本的概念要清楚,基本的規律要熟悉,基本的方法要熟練。

怎樣學好數學秘訣二、做完題目後一定要認真 總結 ,做到舉一反三,這樣,以後遇到同一類的問題是就不會花費太多的時間和精力了。

怎樣學好數學秘訣三、學習概念的最終目的是能運用概念來解決具體問題,因此,要主動運用所學的數學概念來分析,解決有關的數學問題。

怎樣學好數學秘訣四、要掌握各種題型的解題方法,在練習中有意識的地去總結,慢慢地培養適合自己的分析習慣。

怎樣學好數學秘訣五、要主動提高綜合分析問題的能力,藉助文字閱讀去分析理解。

怎樣學好數學秘訣六、將各章節中的內容互相聯系,不同章節之間互相類比,真正將前後知識融會貫通,連為一體,這樣能幫助我們系統深刻地理解知識體系和內容。

怎樣學好數學秘訣七、弄清數學知識間的相互聯系,透徹理解概念,知道其推導過程,使知識條理化,系統化。

怎樣學好數學秘訣八、對於數學學科中的某些原理,定理,公式,不僅要記住它的結論,而且要了解這個結論是如何得出的。

怎樣學好數學秘訣九、在學習中要注意理解,開拓思路,變抽象為具體,逐漸培養自己學習數學的興趣。

怎樣學好數學秘訣十、適當地對概念進行分類,可以使所學的內容化繁為簡,重點突出,脈絡分明,便於進行分析,比較,綜合,概念。

怎樣學好數學秘訣十一、數學學習最忌諱的就是對所學的知識模糊不清,各知識點混淆在一起,為了避免這一狀況,同學們要學會寫「知識結構小結」。

怎樣學好數學秘訣十二、學習數學,不僅要關注題型,更要關注典型題型。

怎樣學好數學秘訣十三、學習數學的第一步是培養自己對數學的興趣,愛因斯坦曾經說過:「興趣是最好的老師」。

怎樣學好數學秘訣十四、學習數學要循序漸進,只要打好了根基,才能逐步提高。

怎樣學好數學秘訣十五、解決數學問題,關鍵是建立正確的數學理念,要從數學角度去思考,利用數學規律去解決。

怎樣學好數學秘訣十六、上課認真聽講是打好數學基礎的重要環節,也是牢固掌握基礎知識的根本途徑。

怎樣學好數學秘訣十七、深刻理解知識點,仔細閱讀課本,認真聽講,理解聯系實際。

怎樣學好數學秘訣十八、認真聽講,一方面能更好地掌握知識的來龍去脈,加深理解,另一方面,還能學會老師分析問題,解決問題的思路方法。

怎樣學好數學秘訣十九、為學習做准備包括兩個部分,一是指做好 課前預習 工作,二是指做好學習的心理准備,防止厭學情緒。

怎樣學好數學秘訣二十、預習時需要注意三點:第一,學會用筆;第二,重視課後習題;第三,分層預習。

怎樣學好數學秘訣二十一、看得懂的例題,請仔細看;看不懂的例題,請硬著頭皮看。

怎樣學好數學秘訣二十二、在課堂上要注意以下三點:第一,神情專注,緊跟講課思路;第二,善於做筆記;第三,積極回答問題,勇於提出問題。

怎樣學好數學秘訣二十三、復習是一個對所學知識進行鞏固和提高的過程。

怎樣學好數學秘訣二十四、不要停留在基本題型這個搖籃上,要學會把基本題型當成零件「組裝」出來的綜合題。

怎樣學好數學秘訣二十五、透徹理解的基礎是深刻記憶,教學知識以理解和運用的方式記憶最為適宜,如果有形式相近的公式,定理等,可以通過對比列表的方式記憶。

怎樣學好數學秘訣二十六、不要將學習看成是一個枯燥的 邏輯思維 過程,在自己的學習生活中,大膽地運用 想像力 ,對於提高學習成績是很有幫助的。

怎樣學好數學秘訣二十七、如果我們將每一次上課都當成一次小小的戰斗,那麼,課前充分預習則如同戰前的秣馬厲兵一樣,是非常必要的。

怎樣學好數學秘訣二十八、決不要因為題目「很小」就不遵循某些你不熟練的解題規范——好習慣是培養出來的,而不是一次記住的。

怎樣學好數學秘訣二十九、學習數學的秘訣是:解題,解題,再解題。

怎樣學好數學秘訣三十、數和形的種.種內在聯系,特別是它們的本質屬性和科學規律,僅僅依靠感覺,知覺或表象是難以認識的,只要通過思維才能深刻理解,牢固掌握。

相關 文章 :

1. 數學六大學習方法三大復習技巧

2. 盤點學好數學的小竅門

3. 小學數學學習方法幾個小技巧

4. 三年級數學18個小技巧與小妙招

5. 如何快速掌握數學技巧

閱讀全文

與如何掌握數學題型相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:705
乙酸乙酯化學式怎麼算 瀏覽:1372
沈陽初中的數學是什麼版本的 瀏覽:1318
華為手機家人共享如何查看地理位置 瀏覽:1010
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:848
數學c什麼意思是什麼意思是什麼 瀏覽:1371
中考初中地理如何補 瀏覽:1260
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:671
數學奧數卡怎麼辦 瀏覽:1351
如何回答地理是什麼 瀏覽:989
win7如何刪除電腦文件瀏覽歷史 瀏覽:1023
大學物理實驗干什麼用的到 瀏覽:1449
二年級上冊數學框框怎麼填 瀏覽:1659
西安瑞禧生物科技有限公司怎麼樣 瀏覽:834
武大的分析化學怎麼樣 瀏覽:1213
ige電化學發光偏高怎麼辦 瀏覽:1301
學而思初中英語和語文怎麼樣 瀏覽:1608
下列哪個水飛薊素化學結構 瀏覽:1388
化學理學哪些專業好 瀏覽:1453
數學中的棱的意思是什麼 瀏覽:1017